首页> 外文期刊>Combustion Science and Technology >Experimental Study on Flame Stability and Thermal Performance of an n-Heptane-Fueled Microscale Combustor
【24h】

Experimental Study on Flame Stability and Thermal Performance of an n-Heptane-Fueled Microscale Combustor

机译:正庚烷型微型燃烧器火焰稳定性和热性能的实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we study the stabilization behavior of micro-diffusion flame of n-heptane formed in a combustor with the inside diameter of 4 mm, in order to elucidate the unique stability mechanism due to miniaturization of diffusion flame downstream porous medium. Effects of incoming Reynolds number and fuel flow rate on overall flame shape, exhaust temperature, and wall temperature are examined experimentally. Furthermore, an energy balance model of the micro combustor is established and optimal working conditions are proposed. Liquid n-heptane is used as fuel and two types of outer tubes are employed in order to examine the role of the heat recirculation. It turns out that the outer tube increases the wall temperature and broadens the flame stability limits. The incoming Reynolds number changes flame position and energy balance in the micro combustors. At low Reynolds number, the outer tube allows the flame to stay close to the porous medium and, accordingly, the porous medium is substantially heated up. Then, the fuel flowing through the porous medium "receives" the heat from the burner (heated by flame) effectively to enhance the reactivity, resulting in improving the stability. At high Reynolds number, the outer tube allows the flame to stay close to the bottom wall of the outer tube and, hence, more radiative heat is transferred through the outer tube, ideal for micro-photovoltaic systems. Additionally, in the case of fixed equivalence ratio, with increasing of the fuel flow rate, combustion releases more heat and the flame is blown toward the bottom of the outer tube. More energy is transferred to the surroundings via the outer tube wall and the maximum value is up to 72.7% of the total combustion heat release.
机译:在这项工作中,我们研究了在直径为4 mm的燃烧室中形成的正庚烷微扩散火焰的稳定行为,以阐明由于扩散火焰下游多孔介质的小型化而产生的独特稳定机制。实验检查了雷诺数和燃料流量对整体火焰形状,排气温度和壁温的影响。此外,建立了微型燃烧器的能量平衡模型,并提出了最佳工作条件。液体正庚烷用作燃料,并使用两种类型的外管来检查热循环的作用。事实证明,外管提高了壁温并扩大了火焰稳定性极限。传入的雷诺数改变了微型燃烧器中的火焰位置和能量平衡。在低雷诺数下,外管使火焰保持靠近多孔介质,因此,多孔介质被充分加热。然后,流经多孔介质的燃料有效地“吸收”来自燃烧器的热量(通过火焰加热)以增强反应性,从而提高稳定性。在高雷诺数下,外管可使火焰停留在外管的底壁附近,因此,更多的辐射热通过外管传递,非常适用于微光伏系统。另外,在固定当量比的情况下,随着燃料流量的增加,燃烧释放出更多的热量,并且火焰吹向外管的底部。更多的能量通过外管壁传递到周围环境中,最大值高达燃烧总热量释放的72.7%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号