首页> 外文期刊>Composite Structures >Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments
【24h】

Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments

机译:热环境中中等厚度功能梯度结构自由振动和热屈曲行为的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

This paper is aimed at studying the free vibration and thermal buckling behavior of moderately thick functionally graded material (FGM) structures including plates, cylindrical panels and shells under thermal environments. A numerical investigation is performed by applying the finite element method (FEM). A formulation based on the first-order shear deformation theory (FSDT) is proposed for the purpose, which considers the effects of the transverse shear strain and rotary inertia. A graded concept is employed to allow the material property to vary gradually inside the elements. The proposed FGM structures are characterized by two constituents (ceramic and metal) whose material properties are dependent on the temperature and vary continuously throughout the thickness according to a power law distribution proportional to the volume fraction of the constituents. Two different sets of power law distribution are used to describe the volume fraction of the constituents, based on a single, or four parameters. Based on a parametric analysis, we demonstrate the potentials of the proposed method through its comparison with results available from the literature and by means of a convergence study. Several numerical examples are further presented to investigate the effects of material compositions, geometrical parameters, specified thermal loading and boundary conditions on the free vibration and thermal buckling behavior of these structures. The effect of initial thermal stresses on the vibration behavior is also investigated for plate and shell structures. (C) 2016 Elsevier Ltd. All rights reserved.
机译:本文旨在研究热环境下中等厚度的功能梯度材料(FGM)结构(包括板,圆柱面板和壳体)的自由振动和热屈曲行为。通过应用有限元方法(FEM)进行数值研究。为此,提出了基于一阶剪切变形理论(FSDT)的公式,该公式考虑了横向剪切应变和旋转惯性的影响。采用分级概念以使材料属性在元素内部逐渐变化。所提出的FGM结构的特征在于两个成分(陶瓷和金属),其材料性质取决于温度,并且根据与成分的体积分数成比例的幂律分布在整个厚度上连续变化。基于单个或四个参数,使用两组不同的幂律分布来描述成分的体积分数。在参数分析的基础上,我们通过与文献中的结果进行比较以及通过收敛研究,证明了该方法的潜力。进一步给出了几个数值示例,以研究材料成分,几何参数,指定的热负荷和边界条件对这些结构的自由振动和热屈曲行为的影响。还研究了板壳结构的初始热应力对振动行为的影响。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Composite Structures》 |2016年第12期|207-221|共15页
  • 作者单位

    BLK 301,09-64 Jurong East St 32, Singapore 600301, Singapore;

    Univ Salento, Dept Innovat Engn, Via Monteroni, I-73100 Lecce, Italy;

    Univ Bologna, DICAM, Dept Civil Chem Environm & Mat Engn, Viale Risorgimento 2, I-40136 Bologna, Italy;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vibration; Thermal buckling; FGM; FSDT; FEM;

    机译:振动;热屈曲;FGM;FSDT;FEM;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号