首页> 外文期刊>Composite Structures >Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites
【24h】

Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites

机译:加载速率取决于单向和机织碳纤维环氧复合材料的I型层间断裂韧性

获取原文
获取原文并翻译 | 示例
           

摘要

The loading rate effect on mode I interlaminar behaviour of unidirectional and woven composites has been analysed from quasi-static to dynamic loading rates. Fibre bridging, which can overestimate the measured fracture energies and conceal the strain rate effect, has been avoided by manufacturing woven and unidirectional (but with a small amourit of transversal E-glass) carbon fibre epoxy composites. Double Cantilever Beam tests have been performed from 8.3 x 10(-5) m/s to 0.19 m/s loading rates, measuring crack length and specimen aperture by a high speed camera. Results over the analysed loading rates have shown an interlaminar fracture energy release rate reduction of 19% for woven reinforcement, and 31% for unidirectional. The main G(IC) reduction on the unidirectional composite (a 24% reduction) is given when increasing testing loading rate from quasi-static to a dynamic (approximately 0.05 m/s). This reduction has been associated to a change in the crack growth behaviour from quasi-static to dynamic loading rates, which in fractographic analysis is found as less fibre/matrix interface failure and larger matrix brittle cracking. A rate parameter called crack rate has been defined from the time derivative of the crack length, which is measured experimentally. This rate parameter allows the comparative study of G(IC) values obtained at different loading rates and crack lengths. (C) 2014 Elsevier Ltd. All rights reserved.
机译:从准静态到动态加载速率,分析了加载速率对单向和机织复合材料I型层间行为的影响。通过制造机织的和单向的(但有少量的横向E玻璃)碳纤维环氧复合材料,可以避免纤维桥接,该桥接可能会高估测得的断裂能并掩盖应变率效应。双悬臂梁测试已从8.3 x 10(-5)m / s到0.19 m / s的加载速率进行了测试,并通过高速相机测量了裂纹长度和样品孔径。在分析的加载速率之上的结果表明,编织增强层的层间断裂能释放速率降低了19%,单向的降低了31%。当将测试加载速率从准静态提高到动态(大约0.05 m / s)时,会给出单向复合材料的主要G(IC)降低(降低24%)。这种减少与裂纹扩展行为从准静态到动态加载速率的变化有关,在分形分析中发现这是由于较少的纤维/基体界面破坏和较大的基体脆性开裂。由裂纹长度的时间导数定义了一个称为裂纹率的速率参数,该值是通过实验测得的。该速率参数允许比较研究在不同载荷速率和裂纹长度下获得的G(IC)值。 (C)2014 Elsevier Ltd.保留所有权利。

著录项

  • 来源
    《Composite Structures》 |2015年第3期|75-82|共8页
  • 作者单位

    Mondragon Unibertsitatea, Mech & Ind Prod Dept, Arrasate Mondragon 20500, Spain;

    Mondragon Unibertsitatea, Mech & Ind Prod Dept, Arrasate Mondragon 20500, Spain;

    Univ Malaga, Dept Civil Engn, E-29071 Malaga, Spain;

    Mondragon Unibertsitatea, Mech & Ind Prod Dept, Arrasate Mondragon 20500, Spain;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Delamination; Fracture toughness; Fibre bridging; Fractography;

    机译:分层;断裂韧性;纤维桥接;分形学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号