首页> 外文期刊>Composite Structures >Local buckling of shear-deformable laminated composite beams with arbitrary cross-sections using discrete plate analysis
【24h】

Local buckling of shear-deformable laminated composite beams with arbitrary cross-sections using discrete plate analysis

机译:使用离散板分析的任意截面可剪切变形层压复合梁的局部屈曲

获取原文
获取原文并翻译 | 示例
           

摘要

The present paper deals with the onset of local buckling of compressively loaded thin-walled beams made of orthotropically laminated composite materials using discrete plate analysis. The analysis model focusses on the buckling of webs and flanges of composite beams with arbitrary cross-sections under uniform longitudinal compressive load. In order to account for transverse shear deformations as they are typical for moderately thick to thick laminated composite materials made of e.g. carbon fibre reinforced plastics, the present analysis is based on first-order shear deformation theory, thus employing the classical Reissner-Mindlin plate theory for the analysis of laminated composite structures. The idealisation consists of modelling the webs as being simply supported at all four edges, while at the longitudinal unloaded edges an elastic clamping is assumed which is represented by a clamping stiffness that takes material, geometry and layups of the adjacent flanges of the beams into account. Accordingly, the flanges are treated as plates with three simply supported edges and one free edge, wherein the unloaded simply supported edge is elastically clamped in order to represent the rotational support by the adjacent web. The analysis of the web and flange buckling loads is performed using the Rayleigh-Ritz-method employing specifically chosen shape functions for the out-of-plane displacements and the rotations of the cross-sections. The accuracy of the employed approaches is established by comparison with accompanying finite element simulations of actual thin-walled composite beams. It is revealed that the presented methodology is highly efficient in terms of computational effort and yet performs with satisfying accuracy which makes it very attractive for actual practical applications whenever the local stability behaviour of composite beams is to be considered.
机译:本文利用正交各向异性板复合材料研究了正交各向异性层压复合材料制成的受压载荷薄壁梁的局部屈曲的开始。分析模型的重点是在均匀的纵向压缩载荷作用下,任意截面的组合梁的腹板和翼板的屈曲。为了解决横向剪切变形,因为横向剪切变形通常用于由例如碳纤维制成的中等厚度至厚的层压复合材料。对于碳纤维增强塑料,本分析是基于一阶剪切变形理论,因此采用经典的Reissner-Mindlin板理论来分析层压复合结构。理想化包括对腹板进行建模,使其在所有四个边缘上都得到简单支撑,而在纵向未加载边缘处,则假定采用弹性夹紧,该夹紧由夹紧刚度表示,该刚度考虑了梁的相邻法兰的材料,几何形状和叠层。因此,将凸缘视为具有三个简单支撑的边缘和一个自由边缘的板,其中将未加载的简单支撑的边缘弹性地夹紧,以代表相邻腹板的旋转支撑。腹板和翼缘屈曲载荷的分析是使用Rayleigh-Ritz方法进行的,该方法采用了专门选择的形状函数来进行平面外位移和横截面旋转。通过与实际薄壁复合梁的随附有限元模拟进行比较,可以确定所采用方法的准确性。揭示了,所提出的方法在计算工作量方面是高效的,但是以令人满意的精度执行,这使得无论何时考虑复合梁的局部稳定性行为,其对于实际的实际应用都非常有吸引力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号