首页> 外文期刊>Composite Structures >Experimental investigation and multi-level modeling of the effective thermal conductivity of hybrid micro-fiber reinforced cementitious composites at elevated temperatures
【24h】

Experimental investigation and multi-level modeling of the effective thermal conductivity of hybrid micro-fiber reinforced cementitious composites at elevated temperatures

机译:杂交微纤维增强水泥复合材料在高温下有效导热率的实验研究和多层次模型

获取原文
获取原文并翻译 | 示例
           

摘要

The knowledge on the thermal conductivity of fiber reinforced composites (FRCs) is essential for developing energy-efficient buildings, as well as minimizing the thermal damage of the infrastructures. The thermal properties of FRCs are strongly dependent on hybrid fibers and elevated temperatures, which remain far from being fully understood. In this study, the evolution of the thermal conductivity of various FRCs (i.e., polypropylene, basalt, carbon, and glass fiber reinforced composites) with temperature is measured using a transient approach. In what follows, a multi-level model is developed to predict the thermal conductivity of FRCs through a stepby-step homogenization based on the effective medium theory. The multi-level model, validated by experimental results over a wide temperature range, is then utilized to guide the materials design of FRCs. The results show that the interfacial thermal resistance plays an important role in determining the thermal conductivity of FRCs at elevated temperatures, and the variation of fiber-to-matrix thermal conductivity ratio can lead to the transformation of the effective thermal conductivity at different scales. The findings can help predict the thermal conductivity of sustainable FRCs accurately and improve the fire-resistant of engineering structures using hybrid fibers rationally.
机译:关于纤维增强复合材料(FRC)的导热率的知识对于开发节能建筑是必不可少的,以及最小化基础设施的热损坏。 FRC的热性能强烈依赖于混合纤维和高温,这仍然远远不受完全理解的。在该研究中,使用瞬态方法测量各种FRC(即聚丙烯,玄武岩,碳和玻璃纤维增​​强复合材料)的各种FRC(即聚丙烯,玄武岩,碳和玻璃纤维增​​强复合材料)的进化。在下文中,开发了多级模型以通过基于有效介质理论来预测FRC的热导电性。然后利用通过实验结果验证的多级模型,以引导FRC的材料设计。结果表明,界面热阻在确定升高温度下FRC的热导率方面发挥着重要作用,并且光纤与基质导热率比的变化可以导致不同尺度的有效导热率的变化。该研究结果可以帮助准确地预测可持续的FRC的导热率,并合理地使用杂合纤维改善工程结构的耐火。

著录项

  • 来源
    《Composite Structures》 |2021年第1期|112988.1-112988.18|共18页
  • 作者单位

    Tongji Univ State Key Lab Disaster Reduct Civil Engn 1239 Siping Rd Shanghai 200092 Peoples R China|Tongji Univ Dept Geotech Engn 1239 Siping Rd Shanghai 200092 Peoples R China;

    Tongji Univ State Key Lab Disaster Reduct Civil Engn 1239 Siping Rd Shanghai 200092 Peoples R China|Tongji Univ Dept Geotech Engn 1239 Siping Rd Shanghai 200092 Peoples R China;

    Tongji Univ State Key Lab Disaster Reduct Civil Engn 1239 Siping Rd Shanghai 200092 Peoples R China|Tongji Univ Dept Geotech Engn 1239 Siping Rd Shanghai 200092 Peoples R China;

    Tongji Univ State Key Lab Disaster Reduct Civil Engn 1239 Siping Rd Shanghai 200092 Peoples R China|Tongji Univ Dept Geotech Engn 1239 Siping Rd Shanghai 200092 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Thermal conductivity; Hybrid micro-fibers; Elevated temperatures; Interfacial thermal resistance; Multi-level homogenization; Effective medium theory;

    机译:导热率;杂交微纤维;温度升高;界面热阻;多层次均质化;有效的中学理论;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号