首页> 外文期刊>Composite Structures >Influence of cracks and voids on the responses of composites
【24h】

Influence of cracks and voids on the responses of composites

机译:裂缝和空隙对复合材料响应的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, numerical study on influence of parameters related to cracks and voids on the responses of the composites under tension, compression, and shear deformation is conducted by extended finite element method (XFEM). Under tension, the maximum stress of composites changes less than 5% when crack orientation, fiber orientation, and void distance change. The maximum averaged stress could differ by 10% when the crack location and crack length change. In the multi-crack composites, there is difference by 10% in maximum stress due to relative crack location. Under shear deformation, crack orientation affects the maximum averaged shear stress significantly when compared to the same composites under tension. The difference of maximum averaged shear stress is more than 15% when fiber orientation changes. The void distance results in 5% difference on the maximum stress of composites. In the multi-crack composites, the relative crack location could result in 10% difference in maximum averaged shear stress. Crack length also could result in significant difference in maximum stress of composites under shear deformation. Under tension and shear deformation, one crack is always the dominant crack and its propagation path determines the strength of the multi-crack composites. Unlike in tension and shear deformation, single crack in the composites under compression doesn't result in the failure of composites even when the strain is 0.03. That is, no geometric buckling occurs for the single crack composite under compression. Noticeable crack propagation starts in multi-crack composites under geometric buckling, which result from the existence of multi-cracks and their interaction in the composites.
机译:本文采用延长的有限元法(XFEM)进行了关于张力,压缩和剪切变形的复合材料响应对裂缝和空隙相关的影响的数值研究。在张力下,当裂缝取向,纤维方向和空隙距离变化时,复合材料的最大应力变化小于5%。当裂缝位置和裂缝长度变化时,最大平均应力可能会差10%。在多裂纹复合材料中,由于相对裂缝位置,在最大应力中存在10%的差异。在剪切变形下,与在张力下相同的复合材料相比时,裂缝取向显着影响最大平均剪切应力。当纤维取向变化时,最大平均剪切应力的差异大于15%。空隙距离导致复合材料的最大应力差异为5%。在多裂纹复合材料中,相对裂缝位置可能导致最大平均剪切应力差异10%。裂缝长度也可能导致剪切变形下复合材料的最大应力的显着差异。在张力和剪切变形下,一个裂缝总是主导裂缝,其传播路径确定多裂纹复合材料的强度。与张力和剪切变形不同,压缩下复合材料中的单裂缝也不会导致复合材料的失效,即使菌株为0.03。也就是说,在压缩下的单裂缝复合材料中没有发生几何屈曲。在几何屈曲下,显着的裂缝传播在几何屈曲下的多裂纹复合材料中开始,这是由多裂纹的存在和复合材料中的相互作用导致。

著录项

  • 来源
    《Composite Structures》 |2021年第9期|114172.1-114172.25|共25页
  • 作者

    Huang H. Sam;

  • 作者单位

    Natl Sun Yat Sen Univ Dept Mech Engn & Electromech Engn Kaohsiung Taiwan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号