首页> 外文期刊>Composites >Effect of the exposition temperature on the behaviour of partially pyrolysed hybrid basalt fibre composites
【24h】

Effect of the exposition temperature on the behaviour of partially pyrolysed hybrid basalt fibre composites

机译:暴露温度对部分热解杂化玄武岩纤维复合材料性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Composites utilising long fibres as reinforcement are the most effective from the point of view of the toughening effect. A brittle matrix reinforced by brittle fibres was investigated in this work. Polysiloxane resin was used as matrix precursor in the studied composite, while continuous basalt fibres served as reinforcement. An optimised pyrolysis process conducted at 650 degrees C under nitrogen atmosphere turned the polymeric precursor into the so-called hybrid matrix consisting of nano-domains of pyrolytic SiOC glass and of non-transformed polysiloxane polymer. The pyrolysis temperature of 650 degrees C was found to be optimal, resulting in the fracture toughness attacking the level of 20 MPa m(1/2) and the strength reaching the value of 1 GPa. The main aim of this paper is to investigate microstructural changes occurring during long-term (1000 h = 41.7 days) exposition to an oxidative air atmosphere at temperatures from 250 degrees C to 600 degrees C and to describe the effect on the mechanical properties of the studied hybrid-matrix composite. The increasing exposition temperature leads to a significant embrittlement of the composite, while the elastic properties (modulus) remain unchanged. Chemical or microstructural changes in the basalt fibres were not detected after the long-term exposition to the tested high temperatures. Nevertheless, fibre embrittlement can be estimated from the tests. Both matrix and fibre-matrix interface were found to suffer from the applied exposition. Distinct changes in chemical composition as well as in microstructure were observed for the matrix. Hence, the observed embrittlement of the composite can be ascribed partly to the changes in the hybrid matrix and the fibre-matrix interface, and partially to fibre embrittlement.
机译:从增韧效果的观点来看,利用长纤维作为增强材料的复合材料是最有效的。在这项工作中研究了由脆性纤维增强的脆性基体。在研究的复合材料中,聚硅氧烷树脂被用作基质前体,而连续的玄武岩纤维则用作增强材料。在氮气气氛下在650摄氏度下进行的优化热解工艺将聚合物前体转变为所谓的混合基质,该混合基质由热解SiOC玻璃的纳米域和未转化的聚硅氧烷聚合物组成。发现最佳的650℃的热解温度,导致断裂韧性侵蚀20 MPa m(1/2)的水平,强度达到1 GPa的值。本文的主要目的是研究在250摄氏度至600摄氏度的温度下长期暴露于氧化性大气中(1000小时= 41.7天)时发生的微观结构变化,并描述对其微观力学性能的影响。研究了混合基质复合材料。升高的暴露温度导致复合材料明显脆化,而弹性性能(模量)保持不变。在长期暴露于测试的高温后,未检测到玄武岩纤维的化学或微观结构变化。然而,可以从测试中估计纤维脆化。发现基质和纤维-基质界面均遭受所施加的暴露。观察到基质的化学组成以及微观结构发生了明显变化。因此,观察到的复合材料的脆化可以部分归因于混合基质和纤维-基质界面的变化,而部分归因于纤维脆化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号