...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Variational-based locking-free energy-momentum schemes of higher-order for thermo-viscoelastic fiber-reinforced continua
【24h】

Variational-based locking-free energy-momentum schemes of higher-order for thermo-viscoelastic fiber-reinforced continua

机译:热粘弹性纤维增强连续体的基于变分的高阶无锁能量动量方案

获取原文
获取原文并翻译 | 示例
           

摘要

Locking-free finite elements and energy-momentum time integration schemes are two of the best-known algorithmic improvements of finite element methods. Both are developed since the middle of the eighties of the last century, but usually independently from each other. Therefore, a smart interface between both algorithms is rarely a development goal of the researcher. In this paper, we present such a smart interface, namely the Hu-Washizu procedure applied to the principle of virtual power. By using of the resulting mixed variational principle, we avoid locking in a spatial finite element discretization of non-isothermal inelastic fiber-reinforced materials, and obtain a family of corresponding higher-order accurate energy-momentum schemes. Thereby, we consider volumetric locking in the matrix material and line locking in the fibers. We show that this reduction of locking in the energy-momentum schemes leads to an increase of the maximum time step size, such that the efficiency of the time integration is improved in the sense that less CPU time is required. This could be shown by using an automatic time step size control with the iteration number of the applied Newton-Raphson scheme as target function. As numerical examples, we consider slender fiber-reinforced structures as a turbine rotor and a lightweight beam consisting of fiber-reinforced trusses. Here, we simulate different combinations of mechanical and thermal Dirichlet and Neumann boundary conditions. (C) 2018 Elsevier B.V. All rights reserved.
机译:无锁定有限元和能量动量时间积分方案是有限元方法中最著名的两种算法改进。两者都是自上世纪八十年代中期以来发展起来的,但通常彼此独立。因此,两种算法之间的智能接口很少成为研究人员的开发目标。在本文中,我们提出了一种智能接口,即适用于虚拟电源原理的Hu-Washizu程序。通过使用由此产生的混合变分原理,我们避免了锁定非等温非弹性纤维增强材料的空间有限元离散化,并获得了一系列相应的高阶精确能量动量方案。因此,我们考虑在基质材料中的体积锁定和在纤维中的线锁定。我们表明,减少能量动量方案中的锁定会导致最大时间步长的增加,从而在需要更少的CPU时间的情况下提高了时间积分的效率。这可以通过使用自动时步大小控件(以所应用的Newton-Raphson方案的迭代数作为目标函数)来显示。作为数值示例,我们将纤细的纤维增强结构视为涡轮转子和由纤维增强的桁架组成的轻型梁。在这里,我们模拟了机械和热Dirichlet和Neumann边界条件的不同组合。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号