...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >An extended finite volume model for implicit cohesive zone fracture propagation in a poroelastic medium
【24h】

An extended finite volume model for implicit cohesive zone fracture propagation in a poroelastic medium

机译:多孔弹性介质中隐含粘性区域裂缝扩展的扩展有限体积模型

获取原文
获取原文并翻译 | 示例
           

摘要

Models for fluid-driven fractures in a poroelastic medium involve the simultaneous simulation of multiple physical processes-diffusion of pore pressure, poroelastic stresses, fluid injection into a fractured porous medium, and fracture propagation. To simulate the above-mentioned physics, many algorithms and discretization techniques have been used in the past. The finite volume method has been gaining popularity for simulating solid mechanics problems. The discretization algorithms discussed in the past have used a segregated method for solving the poroelastic momentum balance, where iterations are necessary to obtain a converged solution for each component of the displacement vector. This segregated approach, when coupled with fluid-driven fracture propagation, can lead to excessive simulation times because of the coupled nature of the problem.In this study, an implicit formulation was designed to construct a linear system of equation for the components of the displacement vector to solve the poroelastic momentum balance equation (without iterating between components). Within this formulation, a fluid-driven fracture propagation model was implicitly incorporated using a cohesive zone approach. This methodology provided accurate solutions as shown by the validations in this paper where simulated results were compared with various well-known analytical solutions. The implicitness of the new model allowed significant improvements in computation speed when solving multi-physics problems. The simulation speed-ups were found to be 2 to 8 times when compared with the segregated method. (C) 2019 Elsevier B.V. All rights reserved.
机译:孔隙弹性介质中流体驱动裂缝的模型涉及多个物理过程的同时模拟-孔隙压力,孔隙弹性应力的扩散,向破裂的多孔介质中注入流体以及裂缝扩展。为了模拟上述物理,过去已经使用了许多算法和离散化技术。有限体积方法在模拟固体力学问题方面已受到广泛欢迎。过去讨论的离散化算法已使用一种分离的方法来求解多孔弹性动量平衡,其中必须进行迭代才能获得位移矢量的每个分量的收敛解。这种分离的方法,加上流体驱动的裂缝扩展,由于问题的耦合性质,可能导致模拟时间过长。在这项研究中,设计了隐式公式来构造位移分量的线性方程组向量,以解决多孔弹性动量平衡方程(无需在组件之间迭代)。在此公式中,使用粘性区方法隐含了流体驱动的裂缝扩展模型。如本文的验证所示,这种方法提供了准确的解决方案,其中将模拟结果与各种众所周知的分析解决方案进行了比较。解决多物理场问题时,新模型的隐式性大大提高了计算速度。与隔离方法相比,仿真速度提高了2到8倍。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号