首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Optimized dynamic design of laminated piezocomposite multi-entry actuators considering fiber orientation
【24h】

Optimized dynamic design of laminated piezocomposite multi-entry actuators considering fiber orientation

机译:考虑纤维取向的压电复合复合多层执行器的动态优化设计

获取原文
获取原文并翻译 | 示例
           

摘要

Laminated piezocomposite actuators (LAPA) are structures composed of piezoelectric and non-piezoelectric materials layers. Due to several parameters and the multiphysics domain involved in the design of LAPA, simple forms are commonly found in industrial applications. However, its design can be systematized by using the topology optimization method (TOM) that permits the solution of complex problems. The design of LAPA with TOM has traditionally considered the optimization of piezoelectric materials over an isotropic substrate, yet some previous researches suggest that LAPA including fiber-reinforced composite layers can increase the performance of these transducers. In addition, works dealing with fiber-based composite focus on static or harmonic analysis with sinusoidal excitations, although other signal inputs are used in practice. In fact, the design of fiber-based LAPA in transient regime has not been assessed before. Thus, a methodology is proposed here to design LAPA with TOM. The actuator is electrically excited with a combined waveform: a sine wave treated as a harmonic problem and a step excitation addressed as a transient problem. Both waves have the same frequency, however they are not applied at the same time. This approach allows the development of a multi-entry actuator since it generates the same level of output displacement independently of the type of excitation input. Consequently, the optimization problem is formulated with the purpose of distributing the material in all layers, the polarization sign in piezoelectric layers and the fiber orientation angle in composite layers, in which the objective function simultaneously seeks for the maximization of the vibration amplitude at certain points of the actuator and its response speed. Eight-node shell elements taking into account the piezoelectric effects are used in the finite element method (FEM) and the "layer wise theory is adopted to model the laminated structure. The Generalized- a method is used to solve the transient problem. In order to optimize the material distribution and the polarization sign, the classical SIMP and PEMAP-P models are used respectively, while to optimize the fiber orientation angles in the composite material, a novel self-penalizable interpolation model is proposed. This optimization problem is solved by using the sequential linear programming (SLP) technique with the CVX solver and the sensitivity analysis is performed with the adjoint method. Discrete signal processing concepts are applied to solve the adjoint problem involving specific points of curves obtained by time integration methods in transient analysis. Numerical techniques are implemented to avoid TOM instabilities. Finally, the potential of this approach is demonstrated with two numerical examples. (C) 2018 Elsevier B.V. All rights reserved.
机译:叠层压电复合执行器(LAPA)是由压电和非压电材料层组成的结构。由于LAPA设计涉及多个参数和多物理场领域,因此在工业应用中通常会找到简单的形式。但是,可以使用允许解决复杂问题的拓扑优化方法(TOM)将其设计系统化。传统上,具有TOM的LAPA的设计考虑了在各向同性基板上优化压电材料的能力,但是先前的一些研究表明,包括纤维增强复合层的LAPA可以提高这些换能器的性能。另外,尽管在实践中使用了其他信号输入,但是处理基于纤维的复合材料的工作侧重于使用正弦激励进行静态或谐波分析。实际上,瞬态状态下基于光纤的LAPA的设计之前尚未进行过评估。因此,这里提出了一种使用TOM设计LAPA的方法。执行器通过组合波形进行电激励:将正弦波视为谐波问题,将阶跃激励视为瞬态问题。两种波具有相同的频率,但是不能同时应用。这种方法允许开发多输入执行器,因为它产生与激励输入类型无关的相同水平的输出位移。因此,提出了优化问题,其目的是在所有层中分配材料,在压电层中分配极化符号,在复合层中分配纤维取向角,其中目标函数同时寻求在某些点处使振动幅度最大化致动器的响应及其响应速度。有限元法(FEM)中使用考虑了压电效应的八节点壳单元,并采用“分层理论”对叠层结构进行建模。广义化方法用于解决瞬态问题。为了优化材料分布和极化符号,分别使用了经典的SIMP模型和PEMAP-P模型,同时为了优化复合材料中的纤维取向角,提出了一种新型的可自惩罚插值模型,该优化问题可以通过以下方式解决:使用带有CVX求解器的顺序线性规划(SLP)技术,并通过伴随方法进行灵敏度分析,并应用离散信号处理概念来解决伴随分析中涉及时间积分方法获得的特定曲线点的伴随问题。为了避免TOM的不稳定性,我们采用了一些技术,最后证明了这种方法的潜力h两个数值示例。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号