首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling
【24h】

Cracking and damage from crystallization in pores: Coupled chemo-hydro-mechanics and phase-field modeling

机译:孔中结晶引起的破裂和破坏:化学-流体力学和相场耦合模型

获取原文
获取原文并翻译 | 示例
           

摘要

Cracking and damage from crystallization of minerals in pores center on a wide range of problems, from weathering and deterioration of structures to storage of CO2 via in situ carbonation. Here we develop a theoretical and computational framework for modeling these crystallization-induced deformation and fracture in fluid-infiltrated porous materials. Conservation laws are formulated for coupled chemo-hydro-mechanical processes in a multiphase material composed of the solid matrix, liquid solution, gas, and crystals. We then derive an expression for the effective stress tensor that is energy-conjugate to the strain rate of a porous material containing crystals growing in pores. This form of effective stress incorporates the excess pore pressure exerted by crystal growth - the crystallization pressure - which has been recognized as the direct cause of deformation and fracture during crystallization in pores. Continuum thermodynamics is further exploited to formalize a constitutive framework for porous media subject to crystal growth. The chemo-hydro-mechanical model is then coupled with a phase-field approach to fracture which enables simulation of complex fractures without explicitly tracking their geometry. For robust and efficient solution of the initial-boundary value problem at hand, we utilize a combination of finite element and finite volume methods and devise a block-partitioned preconditioning strategy. Through numerical examples we demonstrate the capability of the proposed modeling framework for simulating complex interactions among unsaturated flow, crystallization kinetics, and cracking in the solid matrix. (C) 2018 Elsevier B.V. All rights reserved.
机译:孔隙中矿物结晶的开裂和破坏集中在一系列问题上,从风化和结构退化到通过原位碳酸化作用储存二氧化碳。在这里,我们开发了一种理论和计算框架,用于对流体渗透的多孔材料中这些结晶诱导的变形和断裂进行建模。在由固相基质,液体溶液,气体和晶体组成的多相材料中,制定了化学-水-机械耦合过程的守恒定律。然后,我们得出有效应力张量的表达式,该表达式与包含在孔中生长的晶体的多孔材料的应变速率能量共轭。这种有效应力形式包含了晶体生长所施加的过大孔隙压力-结晶压力-这已被认为是孔隙结晶过程中变形和断裂的直接原因。连续热力学被进一步利用来规范构成晶体生长的多孔介质的本构框架。然后将化学-水力-机械模型与相场方法结合起来进行断裂,该方法可以模拟复杂的断裂而无需明确跟踪其几何形状。为了有效而有效地解决初始边值问题,我们结合了有限元和有限体积方法,并设计了一种块划分的预处理策略。通过数值示例,我们证明了所提出的建模框架模拟不饱和流动,结晶动力学和固体基质中的裂纹之间的复杂相互作用的能力。 (C)2018 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号