首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Computational thermomechanics of crystalline rock, Part I: A combined multi-phase-fleld/crystal plasticity approach for single crystal simulations
【24h】

Computational thermomechanics of crystalline rock, Part I: A combined multi-phase-fleld/crystal plasticity approach for single crystal simulations

机译:晶体岩石的计算热力学,第I部分:用于单晶模拟的组合多相流场/晶体可塑性方法

获取原文
获取原文并翻译 | 示例
           

摘要

Rock salt is one of the major materials used for nuclear waste geological disposal. The desired characteristics of rock salt, i.e., high thermal conductivity, low permeability, and self-healing are highly related to its crystalline microstructure. Conventionally, this microstructural effect is often incorporated phenomenologically in macroscopic damage models. Nevertheless, the thermomechanical behavior of a crystalline material is dictated by the nature of crystal lattice and micromechanics (i.e., the slip-system). This paper presents a model proposed to examine these fundamental mechanisms at the grain scale level. We employ a crystal plasticity framework in which single-crystal halite is modeled as a face-centered cubic (FCC) structure with the secondary atoms in its octahedral holes, where a pair of Na+ and Cl- ions forms the bond basis. Utilizing the crystal plasticity framework, we capture the existence of an elastic region in the stress space and the sequence of slip system activation of single-crystal halite under different temperature ranges. To capture the anisotropic nature of the intragranular fracture, we couple a crystal plasticity model with a multi-phase-field formulation that does not require high-order terms for the phase field. Numerical examples demonstrate that the proposed model is able to capture the anisotropy of inelastic and damage behavior under various loading rates and temperature conditions. (C) 2017 Elsevier B.V. All rights reserved.
机译:岩盐是用于核废料地质处置的主要材料之一。岩盐的所需特性,即高导热率,低渗透性和自修复性,与其结晶微结构高度相关。通常,这种微观结构效应通常在现​​象学上被并入宏观损伤模型。然而,晶体材料的热机械行为是由晶格和微力学(即滑移系统)的性质所决定的。本文提出了一个模型,用于在晶粒度水平上检查这些基本机理。我们采用晶体可塑性框架,其中将单晶硅酸盐建模为面心立方(FCC)结构,在其八面体孔中具有次要原子,其中一对Na +和Cl-离子构成了键基。利用晶体可塑性框架,我们捕获了应力空间中弹性区域的存在以及在不同温度范围内单晶岩盐的滑移系统激活的顺序。为了捕获颗粒内裂缝的各向异性,我们将晶体可塑性模型与不需要高阶项的相场耦合在一起。数值算例表明,所提出的模型能够捕获在不同加载速率和温度条件下的非弹性各向异性和破坏行为。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号