...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Unstructured Moving Particle Pressure Mesh (UMPPM) method for incompressible isothermal and non-isothermal flow computation
【24h】

Unstructured Moving Particle Pressure Mesh (UMPPM) method for incompressible isothermal and non-isothermal flow computation

机译:非结构化运动粒子压力网格(UMPPM)方法用于不可压缩的等温和非等温流动计算

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, we intend to address the limitation of our earlier particle method, namely the Moving Particle Pressure Mesh (MPPM) method in handling arbitrary-shaped flow boundaries. The application of the Cartesian pressure mesh system adopted in our original MPPM method, which serves as the main key in recovering the divergence-free velocity condition for incompressible flow in the framework of particle method, is rather limited to rectangular flow domain. Here, the hybrid unstructured pressure mesh is adopted to remove the geometrical constraint of our earlier MPPM method. Coupled with the moving particle strategy in the Moving Particle Semi-implicit (MPS) method, the new method is named as the Unstructured Moving Particle Pressure Mesh (UMPPM) method in the current work. A consistent Laplacian model, namely the Consistent Particle Method (CPM) recently reported in the open literature is incorporated as well in the framework of UMPPM for discretizing the viscous term on the scattered particle cloud, while its implicit form is solved in the current work for overall robustness. Finally, we shall verify our UMPPM method with a series of benchmark solutions (for isothermal and non-isothermal flows) available from the literatures, including those obtained from the commercial code. It is appealing to find that the numerical solutions of UMPPM compare well with the benchmark solutions. In some cases, the accuracy of our UMPPM is better than that of the existing particle method such as Smoothed Particle Hydrodynamics (SPH). (C) 2016 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们打算解决我们较早的粒子方法(即移动粒子压力网格(MPPM)方法)在处理任意形状的流动边界方面的局限性。在我们的原始MPPM方法中采用的笛卡尔压力网格系统的应用是在粒子方法框架内恢复不可压缩流的无散度速度条件的主要关键,而它仅限于矩形流域。在这里,采用混合非结构压力网格来消除我们早期的MPPM方法的几何约束。结合移动粒子半隐式(MPS)方法中的移动粒子策略,该新方法在当前工作中被称为非结构化移动粒子压力网格(UMPPM)方法。一个一致的拉普拉斯模型,即最近在公开文献中报道的一致性粒子法(CPM),也被并入UMPPM框架中,以离散散布在粒子云上的粘性项,而其隐式在当前的工作中得到了解决。整体健壮性。最后,我们将使用一系列可从文献中获得的基准解决方案(用于等温和非等温流动),包括从商业法规获得的基准解决方案,来验证我们的UMPPM方法。吸引人的是,UMPPM的数值解决方案与基准解决方案可以很好地比较。在某些情况下,我们的UMPPM的精度要优于现有的粒子方法,例如“平滑粒子流体动力学(SPH)”。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号