...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Multiscale modeling of polycrystalline materials: A boundary element approach to material degradation and fracture
【24h】

Multiscale modeling of polycrystalline materials: A boundary element approach to material degradation and fracture

机译:多晶材料的多尺度建模:材料降解和断裂的边界元方法

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, a two-scale approach to degradation and failure in polycrystalline materials is proposed. The formulation involves the engineering component level (macro-scale) and the material grain level (micro-scale). The macro-continuum is modeled using a three-dimensional boundary element formulation in which the presence of damage is formulated through an initial stress approach to account for the local softening in the neighborhood of points experiencing degradation at the micro-scale. The microscopic degradation is explicitly modeled by associating Representative Volume Elements (RVEs) to relevant points of the macro continuum, for representing the polycrystalline microstructure in the neighborhood of the selected points. A three-dimensional grain-boundary formulation is used to simulate intergranular degradation and failure in the microstructure, whose morphology is generated using the Voronoi tessellations. Intergranular degradation and failure are modeled through cohesive and frictional contact laws. To couple the two scales, macro-strains are transferred to the RVEs as periodic boundary conditions, while overall macro-stresses are obtained as volume averages of the micro-stress field. The comparison between effective macro-stresses for the damaged and undamaged RVE allows to define a macroscopic measure of material degradation. To avoid pathological damage localization at the macro-scale, integral non-local counterparts of the strains are employed. A multiscale processing algorithm is described. Two multiscale simulations are performed to demonstrate the capability of the method. (C) 2015 Elsevier B.V. All rights reserved.
机译:在这项工作中,提出了一种用于多晶材料降解和破坏的两尺度方法。配方涉及工程组件级别(宏观级别)和材料颗粒级别(微观级别)。宏观连续体是使用三维边界元素公式化建模的,其中通过初始应力方法来公式化损伤的存在,以说明在微观尺度上经历降解的点附近的局部软化。通过将代表体积元素(RVE)与宏连续体的相关点相关联,可以对微观退化进行显式建模,以表示所选点附近的多晶微观结构。使用三维晶界公式模拟微观结构中的晶间降解和破坏,其微观结构是使用Voronoi镶嵌生成的。晶间降解和破坏是通过内聚和摩擦接触定律建模的。为了耦合这两个尺度,将宏观应变作为周期性边界条件转移到RVE,而将整体宏观应力作为微应力场的体积平均值获得。损坏的和未损坏的RVE的有效宏观应力之间的比较允许定义材料退化的宏观度量。为了避免病理损伤在宏观上的局限性,使用了菌株的整体非局部对应物。描述了一种多尺度处理算法。进行了两次多尺度模拟以证明该方法的功能。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号