...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading
【24h】

Wavelet transformation based multi-time scaling method for crystal plasticity FE simulations under cyclic loading

机译:循环载荷下基于小波变换的多时间尺度法进行晶体塑性有限元模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Microstructure based mechanistic calculations, coupled with physically motivated crack initiation criterion, can provide effective means to predict fatigue cracking in polycrystalline materials. However the accommodation of large number of cycles to failure, as observed in the experiments, could be computationally exhaustive to simulate using conventional single time scale finite element analysis. To meet this challenging requirement, a novel wavelet transformation based multi-time scaling algorithm is proposed for accelerated crystal plasticity finite element simulations in this paper. An advantage over other conventional methods that fail because of assumptions of periodicity etc., is that no assumption of scale separation is needed with this method. The wavelet decomposition naturally retains the high frequency response through the wavelet basis functions and transforms the low frequency material response into a "cycle scale" problem with monotonic evolution. The method significantly enhances the computational efficiency in comparison with conventional single time scale integration methods. Adaptivity conditions are also developed for this algorithm to improve accuracy and efficiency. Numerical examples for validating the multi-scaling algorithm are executed for a one dimensional viscoplastic problem and a 3D crystal plasticity model of polycrystalline Ti alloy under the cyclic loading conditions.
机译:基于微观结构的力学计算,加上物理上的裂纹萌生准则,可以为预测多晶材料的疲劳裂纹提供有效的手段。然而,如在实验中所观察到的,对于故障的大量循环的适应可能在计算上是穷举性的,以使用常规的单时间尺度有限元分析来模拟。为了满足这一挑战性要求,本文提出了一种基于小波变换的多次缩放算法,用于加速晶体塑性有限元模拟。与由于周期性等的假设而失败的其他常规方法相比,其优点在于该方法不需要尺度分离的假设。小波分解通过小波基函数自然保留了高频响应,并将低频物质响应转换为具有单调演化的“循环尺度”问题。与传统的单时间尺度积分方法相比,该方法显着提高了计算效率。还为该算法开发了适应性条件,以提高准确性和效率。针对一维粘塑性问题和循环加载条件下的多晶钛合金的3D晶体可塑性模型,执行了验证多尺度算法的数值示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号