...
首页> 外文期刊>Computer Methods in Applied Mechanics and Engineering >Simulating Nanoindentation And Predicting Dislocation Nucleation Using Interatomic Potential Finite Element Method
【24h】

Simulating Nanoindentation And Predicting Dislocation Nucleation Using Interatomic Potential Finite Element Method

机译:使用原子间势有限元方法模拟纳米压痕并预测位错成核

获取原文
获取原文并翻译 | 示例
           

摘要

Dislocation nucleation is central to our understanding of the onset of plasticity during nanoindentation. The shear stress in small volumes beneath the nanoindenter can achieve the theoretical limit of a perfect crystal. The ensuing nonlinear elastic instability can trigger homogenous dislocation nucleation inside the crystal. Here we employ the interatomic potential finite element method to simulate nanoindentation and predict dislocation nucleation. Simulations are performed for indentation on the (111), (110) and (100) surfaces of Al, Cu, Ni single crystals. We quantify the critical conditions of dislocation nucleation, including the indentation load of nucleation, location of nucleation site, nucleation stress and activated slip system. We find these conditions sensitively depend on indentation orientation, but are consistent for different crystals. The results highlight the critical role of hyperelasticity (the nonlinear elasticity caused by elastic softening at large strain) and crystallography in dislocation nucleation in small material volumes. Our study also reveals the deficiency of commonly used nucleation criterion such as the critical resolved shear stress.
机译:位错成核是我们了解纳米压痕过程中可塑性开始的关键。纳米压头下方的小体积剪切应力可以达到理想晶体的理论极限。随之而来的非线性弹性不稳定性会触发晶体内部均匀的位错成核。在这里,我们采用原子间电势有限元方法来模拟纳米压痕并预测位错成核。对Al,Cu,Ni单晶的(111),(110)和(100)表面进行压痕模拟。我们量化了位错成核的关键条件,包括成核的压痕载荷,成核部位的位置,成核应力和活化滑移系统。我们发现这些条件敏感地取决于压痕方向,但对于不同的晶体是一致的。结果突出了超弹性(大应变下的弹性软化引起的非线性弹性)和晶体学在小体积材料中位错形核中的关键作用。我们的研究还揭示了常用的成核标准(如临界解析剪切应力)的不足。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号