...
首页> 外文期刊>Construction and Building Materials >Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression
【24h】

Mechanical behaviors of the brittle rock-like specimens with multi-non-persistent joints under uniaxial compression

机译:单轴压缩下具有多非持久节理的脆性岩石样标本的力学行为

获取原文
获取原文并翻译 | 示例
           

摘要

The stability of rock engineering applications is significantly influenced by the mechanical behavior of jointed rock masses. However, the deformability, strength and failure characteristics of non-persistent jointed rock specimens have not been examined comprehensively. In this paper, laboratory tests and discrete element method simulations are used to investigate the influence of angle (alpha), spacing (S), joint length (L), and rock bridge length (B) on uniaxial compressive strength (UCS), Young's modulus and failure processes of brittle rock-like specimens with multi-non-persistent joints. The orthogonal experimental method is used to quantify the influence of four geometric factors on the UCS and Young's modulus through comparing different range values. The results show that the joint inclination angle has the most significant influences on UCS and Young's modulus. The failure pattems can be classified into six categories: (1) stepped path failure caused by wing cracks; (2) stepped path failure caused by wing cracks and shear cracks; (3) vertical failure caused by wing cracks; (4) stepped path failure caused by anti wing cracks; (5) transfixion failure along the diagonal caused by shear cracks; (6) intact failure. The evolution of micro-cracks divides the numerical stress-strain curve into four stages: stage I, linear elastic stage; stage II, stable development stage of micro-cracks; stage III, increment stage of micro-cracks before peak strength; stage IV, increment stage of micro-cracks after peak strength. Comparison between the experimental and numerical results confirms the capacity of the DEM model to simulate the non persistent jointed rock specimens. These experimental and numerical results enhance our understanding of the influence of joints on the mechanical behavior of rock masses. (C) 2019 Elsevier Ltd. All rights reserved.
机译:节理岩体的力学行为极大地影响了岩石工程应用的稳定性。但是,非持久节理岩样的变形性,强度和破坏特性尚未得到全面检查。在本文中,实验室测试和离散元方法模拟被用来研究角度(α),间距(S),接缝长度(L)和岩桥长度(B)对单轴抗压强度(UCS),杨氏强度的影响。多非持久节理的脆性岩石样试样的模量和破坏过程通过比较不同的范围值,使用正交实验方法来量化四个几何因素对UCS和杨氏模量的影响。结果表明,关节倾角对UCS和杨氏模量的影响最大。失效模式可分为六类:(1)机翼裂纹引起的阶梯状路径失效; (2)由机翼裂纹和剪切裂纹引起的阶梯状路径破坏; (3)机翼裂纹引起的垂直破坏; (4)由于机翼裂纹引起的阶梯状路径故障; (5)由剪切裂缝引起的沿对角线的贯穿失败; (6)完好无损。微裂纹的发展将数值应力-应变曲线分为四个阶段:第一阶段,线性弹性阶段;第二阶段,线性弹性阶段。第二阶段,微裂纹的稳定发展阶段;第三阶段,在峰值强度之前微裂纹的增加阶段;第四阶段,峰值强度后微裂纹的增加阶段。实验和数值结果之间的比较证实了DEM模型模拟非持久节理岩石样本的能力。这些实验和数值结果加深了我们对节理对岩体力学行为影响的理解。 (C)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号