...
首页> 外文期刊>Control Engineering Practice >Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment
【24h】

Observer-based fixed-time continuous nonsingular terminal sliding mode control of quadrotor aircraft under uncertainties and disturbances for robust trajectory tracking: Theory and experiment

机译:基于观察者的固定时间连续非连续非连续非连续射击终端滑动模式控制鲁棒轨迹跟踪的不确定因素和干扰:理论与实验

获取原文
获取原文并翻译 | 示例
           

摘要

This paper solves an accurate fixed-time attitude and position control problems of a quadrotor UAV system. The aircraft system is subject to nonlinearities, parameter uncertainties, unmodeled dynamics, and external time-varying disturbances. To deal with the under-actuation problem of the quadrotor's dynamics, a hierarchical control structure with an inner-outer loop framework is adopted for the flight control system design. Robust nonlinear control strategies for attitude and position control are innovatively proposed based on a new continuous nonsingular terminal sliding mode control (CNTSMC) scheme. A full-order homogeneous terminal sliding surface is designed for the attitude and position states in such a way that the sliding motion is fixed-time stable independently of the system's initial condition. Hence, this contributes to enhancing the control system robustness. A disturbance observer-based control (DOBC) approach is developed to stabilize the inner rotational subsystem (attitude-loop). This compounded control structure integrates a finite-time observer (FTO) and the CNTSMC scheme. The FTO observer is incorporated into the control framework to cope with the strong perturbations. An output-feedback control approach is adopted for the outer translational subsystem (position-loop) to ensure a velocity-free control. In this context, the CNTSMC scheme is combined with a fixed-time extended state observer (FXESO) to achieve an active disturbance rejection control (ADRC) by estimating and canceling the lumped disturbances. Therefore, within the developed control approach including the robust CNTSMC scheme, DOBC, and ADRC strategies, robust and accurate trajectory tracking control can be achieved despite uncertainties and disturbances. Stability analysis of the closed-loop system is rigorously investigated by using the Lyapunov theorem, bi-limit homogeneous theory, and the notion of input-to-state stability (ISS). Extensive experimental tests under the influence of various disturbances are conducted to corroborate the theoretical findings. To this end, an effective model-based design (MBD) framework is established to implement the developed control algorithms in real autopilot hardware. Furthermore, processor-in-the-loop (PIL) experiments are also carried out within the MBD framework. A comparative study is made involving our control algorithms and other control strategies. Overall, the obtained results show that the synthesized control system yields performance improvement regarding fixed-time tracking stability featuring fast transient, strong robustness, and high steady-state precision. Besides, the chattering effect of regular linear sliding mode control (LSMC) is significantly alleviated. Moreover, unlike conventional TSMC, the control input shows no singularity.
机译:本文解决了一个四旋翼UAV系统的准确固定时间姿态和位置控制的问题。该机的系统是受非线性,参数不确定性,未建模动态和外部随时间变化的干扰。为了解决四旋翼飞行器的动力装置的底启动的问题,与内外环框架的分层控制结构是通过了飞行控制系统的设计。姿态和位置控制非线性鲁棒控制策略基于一种新的连续非奇异终端滑模控制(CNTSMC)方案被提出创新。甲全阶均匀终端滑动面以这样的方式独立于系统的初始条件的设计的姿态和位置的状态使滑动运动被固定时间是稳定的。因此,这有助于提高控制系统的鲁棒性。 A-基于观测干扰控制(DOBC)的方式进行显影,以稳定内旋转子系统(姿势环)。这个复合控制结构集成了有限时间观察者(FTO)和CNTSMC方案。在FTO观察者被并入控制框架,以应付强烈扰动。的输出反馈控制方法被采用用于外平移子系统(位置环路),以确保自由速度控制。在此背景下,CNTSMC方案与固定时间扩张状态观测器(FXESO)组合以实现通过估计和消除的集总干扰的抗扰控制(ADRC)。因此,包括强大的CNTSMC方案,DOBC和ADRC策略,强大和精确的轨迹跟踪控制,而不管不确定性和干扰来实现发展的控制方法中。闭环系统的稳定性分析的严格通过利用Lyapunov定理,双限均匀理论,并输入到状态稳定性的概念(ISS)的影响。各种干扰的影响下,广泛的实验测试以确证的理论研究结果。为此,有效的基于模型的设计(MBD)框架建立以实现真正的自动驾驶仪的硬件开发的控制算法。此外,处理器在环(PIL)实验也是本MBD框架内进行的。比较研究是由涉及我们的控制算法和其它控制策略。总体而言,所得到的结果表明,配备了快速瞬态,鲁棒性强和高稳态精度有关固定时间跟踪稳定性综合控制系统产量的性能提升。此外,规则的线性滑动模式控制的(LSMC)抖动效果显著减轻。此外,不同于常规TSMC,控制输入显示没有奇点。

著录项

  • 来源
    《Control Engineering Practice》 |2021年第6期|104806.1-104806.23|共23页
  • 作者单位

    School of Aeronautics and Astronautics University of Electronic Science and Technology of China Chengdu 611731 China Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu 611731 China;

    School of Aeronautics and Astronautics University of Electronic Science and Technology of China Chengdu 611731 China Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu 611731 China;

    School of Mechanical and Design Engineering University of Portsmouth PO1 3DJ Portsmouth UK;

    School of Aeronautics and Astronautics University of Electronic Science and Technology of China Chengdu 611731 China Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu 611731 China;

    School of Aeronautics and Astronautics University of Electronic Science and Technology of China Chengdu 611731 China Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province University of Electronic Science and Technology of China Chengdu 611731 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Quadrotor UAV; Fixed-time stability; Trajectory tracking control; continuous nonsingular terminal sliding mode; control; Disturbance observer-based control; Active disturbance rejection control; Output-feedback control;

    机译:Quadrotor UAV;固定时间稳定;轨迹跟踪控制;连续的非垂直端子滑动模式;控制;干扰观察者的控制;主动扰动抑制控制;输出反馈控制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号