首页> 外文期刊>Coordination chemistry reviews >Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry
【24h】

Ironing out the photochemical and spin-crossover behavior of Fe(II) coordination compounds with computational chemistry

机译:用计算化学方法消除铁(II)配位化合物的光化学和自旋交叉行为

获取原文
获取原文并翻译 | 示例
           

摘要

Effective strategies for designing Fe(II) coordination complexes with specifically tailored spin-state energetics can lead to advances in many areas of inorganic and materials chemistry. These include, but are not limited to, rational development of novel spin crossover complexes, efficient chromophores for photosensitization of dye-sensitized solar cells, and multifunctional materials. As the spin-state ordering of transition metal complexes is strongly rooted in their electronic structures, computational chemistry has naturally played an important role in assisting experimental work in this area. Unfortunately, despite many advances, accurate determination of the spin-state energetics of Fe(II) complexes still poses a remarkable challenge for virtually all applicable forms of electronic structure theory due to being controlled by a delicate balancing between correlation and exchange effects. This review focuses on some of the more notable successes and failures of modern electronic structure theory in properly describing these systems in the absence of solid-state effects. The strengths and weaknesses of using traditional wavefunction based methods and density functional theory are considered, and illustrative examples are provided to demonstrate that the modern computational chemist should make use of experimental data whenever possible and expect to utilize a combination of methods to obtain the best results. The review closes by briefly surveying some of the many interesting combined computational and experimental studies of Fe(II) chemistry that have lead to greater fundamental insight and practical understanding of this challenging class of systems. (C) 2017 Elsevier B.V. All rights reserved.
机译:设计具有专门定制的自旋态能量的Fe(II)配合物的有效策略可以导致无机和材料化学许多领域的进步。这些包括但不限于,新型自旋交联络合物的合理开发,用于染料敏化太阳能电池的光敏化的有效生色团和多功能材料。由于过渡金属络合物的自旋态有序性根植于其电子结构中,因此计算化学自然在协助该领域的实验工作中发挥了重要作用。不幸的是,尽管取得了许多进步,但由于受相关和交换效应之间微妙的平衡控制,实际上确定电子(II)配合物的自旋态能量的方法仍对几乎所有适用形式的电子结构理论提出了巨大挑战。这篇综述着重于在没有固态效应的情况下正确描述这些系统的现代电子结构理论的一些更显着的成功和失败。考虑了使用基于传统波函数的方法和密度泛函理论的优缺点,并提供了说明性示例,以证明现代计算化学家应尽可能利用实验数据,并期望结合使用多种方法以获得最佳结果。 。这篇综述通过简要地考察Fe(II)化学的许多有趣的组合计算和实验研究中的一些而结束,这些研究对这种具有挑战性的系统类别产生了更大的基础性认识和实际理解。 (C)2017 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号