...
首页> 外文期刊>Coordination chemistry reviews >How iron-containing proteins control dioxygen chemistry: a detailed atomic level description via accurate quantum chemical and mixed quantum mechanics/molecular mechanics calculations
【24h】

How iron-containing proteins control dioxygen chemistry: a detailed atomic level description via accurate quantum chemical and mixed quantum mechanics/molecular mechanics calculations

机译:含铁蛋白质如何控制双氧化学:通过精确的量子化学和混合量子力学/分子力学计算对原子水平进行详细描述

获取原文
获取原文并翻译 | 示例
           

摘要

Over the past several years, rapid advances in computational hardware, quantum chemical methods, and mixed quantum mechanics/molecular mechanics (QM/MM) techniques have made it possible to model accurately the interaction of ligands with metal-containing proteins at an atomic level of detail. In this paper, we describe the application of our computational methodology, based on density functional (DFT) quantum chemical methods, to two diiron-containing proteins that interact with dioxygen: methane monooxygenase (MMO) and hemerythrin (Hr). Although the active sites are structurally related, the biological function differs substantially. MMO is an enzyme found in methanotrophic bacteria and hydroxylates aliphatic C-H bonds, whereas Hr is a carrier protein for dioxygen used by a number of marine invertebrates. Quantitative descriptions of the structures and energetics of key intermediates and transition states involved in the reaction with dioxygen are provided, allowing their mechanisms to be compared and contrasted in detail. An in-depth understanding of how the chemical identity of the first ligand coordination shell, structural features, electrostatic and van der Waals interactions of more distant shells control ligand binding and reactive chemistry is provided, affording a systematic analysis of how iron-containing proteins process dioxygen. Extensive contact with experiment is made in both systems, and a remarkable degree of accuracy and robustness of the calculations is obtained from both a qualitative and quantitative perspective.
机译:在过去的几年中,计算硬件,量子化学方法和混合量子力学/分子力学(QM / MM)技术的飞速发展,使得可以精确地模拟配体与含金属蛋白质在原子水平上的相互作用。详情。在本文中,我们描述了基于密度泛函(DFT)量子化学方法的计算方法在与双氧相互作用的两种含二铁的蛋白质中的应用:甲烷单加氧酶(MMO)和血红蛋白(Hr)。尽管活性位点在结构上相关,但生物学功能却有很大不同。 MMO是一种在甲烷营养细菌中发现的酶,可羟基化脂肪族C-H键,而Hr是许多海洋无脊椎动物使用的双氧载体蛋白。提供了与双氧反应涉及的关键中间体和过渡态的结构和能级的定量描述,从而可以对它们的机理进行详细比较和对比。深入了解第一个配体配位壳的化学特征,结构特征,更远的壳的静电和范德华相互作用如何控制配体结合和反应化学,从而对含铁蛋白质的加工过程进行了系统分析双氧。在这两个系统中都进行了广泛的实验接触,从定性和定量两个角度都获得了显着程度的计算准确性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号