首页> 外文期刊>BMC Biotechnology >Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity
【24h】

Disruption of Trichoderma reesei cre2, encoding an ubiquitin C-terminal hydrolase, results in increased cellulase activity

机译:编码泛素C末端水解酶的里氏木霉cre2的破坏导致纤维素酶活性增加

获取原文
           

摘要

Background The filamentous fungus Trichoderma reesei ( Hypocrea jecorina) is an important source of cellulases for use in the textile and alternative fuel industries. To fully understand the regulation of cellulase production in T. reesei , the role of a gene known to be involved in carbon regulation in Aspergillus nidulans , but unstudied in T. reesei , was investigated. Results The T. reesei orthologue of the A. nidulans creB gene, designated cre2 , was identified and shown to be functional through heterologous complementation of a creB mutation in A. nidulans . A T. reesei strain was constructed using gene disruption techniques that contained a disrupted cre2 gene. This strain, JKTR2-6, exhibited phenotypes similar to the A. nidulans creB mutant strain both in carbon catabolite repressing, and in carbon catabolite derepressing conditions. Importantly, the disruption also led to elevated cellulase levels. Conclusions These results demonstrate that cre2 is involved in cellulase expression. Since the disruption of cre2 increases the amount of cellulase activity, without severe morphological affects, targeting creB orthologues for disruption in other industrially useful filamentous fungi, such as Aspergillus oryzae , Trichoderma harzianum or Aspergillus niger may also lead to elevated hydrolytic enzyme activity in these species.
机译:背景技术丝状真菌里氏木霉(红霉菌)是纤维素酶在纺织和替代燃料工业中使用的重要来源。为了充分了解里氏木霉中纤维素酶生产的调控,研究了一种基因的作用,该基因在构巢曲霉中参与碳调控,但未在里氏木霉中研究。结果鉴定了构巢曲霉creB基因的里氏木直向同源物,命名为cre2,并通过构巢曲霉中creB突变的异源互补显示其功能。使用含有破坏的cre2基因的基因破坏技术构建里氏木霉菌株。在碳分解代谢物抑制和在碳分解代谢物抑制条件下,该菌株JKTR2-6表现出与构巢曲霉creB突变菌株相似的表型。重要的是,破坏还导致纤维素酶水平升高。结论这些结果表明cre2参与纤维素酶的表达。由于cre2的破坏会增加纤维素酶活性的数量,而没有严重的形态学影响,因此将creB直向同源物靶向其他工业上有用的丝状真菌(例如米曲霉,哈茨木霉或黑曲霉)的破坏也可能导致这些物种中水解酶活性的升高。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号