首页> 外文期刊>BMC Biotechnology >Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase
【24h】

Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase

机译:通过降低过量表达碱性磷酸酶的酿酒酵母重组菌株中的ATP含量,增加了葡萄糖中乙醇的积累。

获取原文
           

摘要

Background The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity. Results Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene ( ADH1 ) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production. Conclusion Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae .
机译:背景技术通过发酵生产乙醇代表了酿酒酵母在工业生物技术中的最大规模应用。预计在未来十年中,全球对燃料生物乙醇的需求将增加,并且由于进一步的扩大,将超过2000亿升。我们的工作假设是,酒精发酵过程中酿酒酵母细胞中ATP含量的下降应导致乙醇产量的增加(产量和生产率),而更多的葡萄糖转化为乙醇。我们实现这一目标的方法是通过增加非特异性碱性磷酸酶活性来降低细胞内ATP水平。结果将编码液泡或胞浆形式的碱性磷酸酶的酿酒酵母PHO8基因的完整和截短版本与乙醇脱氢酶基因(ADH1)启动子融合。用于转化载体的构建的表达盒还包含显性选择标记kanMX4和酿酒酵母δ序列,以促进与基因组的多拷贝整合。实验室和工业生产乙醇的菌株BY4742和AS400过表达液泡形式的碱性磷酸酶,其特征是与亲本菌株相比,细胞内ATP水平和生物量积累略有降低,乙醇生产率提高(分别为13%和7%)。表达碱性磷酸酶截短的胞质形式的菌株显示出延长的滞后期,减少的生物量积累和乙醇生产中的强烈缺陷。结论液泡碱性磷酸酶的过表达导致酿酒酵母乙醇产量增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号