...
首页> 外文期刊>Biology Open >Local deformation and stiffness distribution in fly wings
【24h】

Local deformation and stiffness distribution in fly wings

机译:飞翼的局部变形和刚度分布

获取原文
           

摘要

Mechanical properties of insect wings are essential for insect flight aerodynamics. During wing flapping, wings may undergo tremendous deformations, depending on the wings’ spatial stiffness distribution. We here show an experimental evaluation of wing stiffness in three species of flies using a micro-force probe and an imaging method for wing surface reconstruction. Vertical deflection in response to point loads at 11 characteristic points on the wing surface reveals that average spring stiffness of bending lines between wing hinge and point loads varies ~77-fold in small fruit flies and up to ~28-fold in large blowflies. The latter result suggests that local wing deformation depends to a considerable degree on how inertial and aerodynamic forces are distributed on the wing surface during wing flapping. Stiffness increases with an increasing body mass, amounting to ~0.6?Nm?1in fruit flies, ~0.7?Nm?1in house flies and ~2.6?Nm?1in blowflies for bending lines, running from the wing base to areas near the center of aerodynamic pressure. Wings of house flies have a ~1.4-fold anisotropy in mean stiffness for ventral versus dorsal loading, while anisotropy is absent in fruit flies and blowflies. We present two numerical methods for calculation of local surface deformation based on surface symmetry and wing curvature. These data demonstrate spatial deformation patterns under load and highlight how veins subdivide wings into functional areas. Our results on wings of living animals differ from previous experiments on detached, desiccated wings and help to construct more realistic mechanical models for testing the aerodynamic consequences of specific wing deformations.
机译:昆虫翅膀的机械特性对于昆虫飞行的空气动力学至关重要。在机翼拍打过程中,机翼可能会发生巨大变形,具体取决于机翼的空间刚度分布。我们在这里显示了使用微力探针和机翼表面重建成像方法对三种蝇类的机翼刚度进行实验评估。机翼表面11个特征点上的点载荷引起的垂直挠度表明,机翼铰链和点载荷之间弯曲线的平均弹簧刚度在小果蝇中变化约77倍,在大果蝇中变化约28倍。后一结果表明,局部机翼变形在很大程度上取决于机翼拍打过程中惯性力和空气动力在机翼表面的分布情况。刚度随着体重的增加而增加,在果蝇中达到〜0.6?Nm?1,在室内果蝇中达到〜0.7?Nm?1,而在果蝇中则达到〜2.6?Nm?1以弯曲线,从机翼底部一直延伸到果蝇中心附近。空气动力压力。腹蝇和腹蝇的家蝇翅膀的平均刚度各向异性约为〜1.4倍,而果蝇和实蝇则没有各向异性。我们提出了两种基于表面对称性和机翼曲率的数值方法来计算局部表面变形。这些数据显示了载荷作用下的空间变形模式,并突出了静脉如何将机翼细分为功能区域。我们在有生命的动物的机翼上获得的结果与之前在干燥的,分离的机翼上进行的实验不同,并且有助于构建更逼真的机械模型来测试特定机翼变形的空气动力学后果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号