...
首页> 外文期刊>Communicative & Integrative Biology >Structural complexity of filaments formed from the actin and tubulin folds
【24h】

Structural complexity of filaments formed from the actin and tubulin folds

机译:由肌动蛋白和微管蛋白折叠形成的细丝的结构复杂性

获取原文
           

摘要

From yeast to man, an evolutionary distance of 1.3?billion years, the F-actin filament structure has been conserved largely in line with the 94% sequence identity. The situation is entirely different in bacteria. In comparison to eukaryotic actins, the bacterial actin-like proteins (ALPs) show medium to low levels of sequence identity. This is extreme in the case of the ParM family of proteins, which often display less than 20% identity. ParMs are plasmid segregation proteins that form the polymerizing motors that propel pairs of plasmids to the extremities of a cell prior to cell division, ensuring faithful inheritance of the plasmid. Recently, exotic ParM filament structures have been elucidated that show ParM filament geometries are not limited to the standard polar pair of strands typified by actin. Four-stranded non-polar ParM filaments existing as open or closed nanotubules are found in Clostridium tetani and Bacillus thuringiensis , respectively. These diverse architectures indicate that the actin fold is capable of forming a large variety of filament morphologies, and that the conception of the “actin” filament has been heavily influenced by its conservation in eukaryotes. Here, we review the history of the structure determination of the eukaryotic actin filament to give a sense of context for the discovery of the new ParM filament structures. We describe the novel ParM geometries and predict that even more complex actin-like filaments may exist in bacteria. Finally, we compare the architectures of filaments arising from the actin and tubulin folds and conclude that the basic units possess similar properties that can each form a range of structures. Thus, the use of the actin fold in microfilaments and the tubulin fold for microtubules likely arose from a wider range of filament possibilities, but became entrenched as those architectures in early eukaryotes.
机译:从酵母到人,进化距离为13亿年,F-肌动蛋白丝的结构已被保守,基本上符合94%的序列同一性。细菌的情况完全不同。与真核肌动蛋白相比,细菌肌动蛋白样蛋白(ALP)显示中等至低水平的序列同一性。对于ParM家族的蛋白质而言,这是极端的情况,通常显示不到20%的同一性。 ParM是质粒分离蛋白,可形成聚合引擎,在细胞分裂之前将成对的质粒推进细胞末端,从而确保质粒的真实遗传。最近,已经阐明了奇异的ParM细丝结构,显示出ParM细丝的几何形状不限于肌动蛋白代表的标准极对链。存在于破伤风梭状芽胞杆菌和苏云金芽孢杆菌中的以开放或封闭的纳米管形式存在的四链非极性ParM细丝。这些不同的结构表明,肌动蛋白折叠能够形成各种各样的细丝形态,并且“肌动蛋白”细丝的概念已受到其在真核生物中的保守性的严重影响。在这里,我们回顾了真核生物肌动蛋白丝的结构确定的历史,以便为发现新的ParM丝结构提供背景感。我们描述了新颖的ParM几何形状,并预测甚至更复杂的肌动蛋白样细丝可能会存在于细菌中。最后,我们比较了肌动蛋白和微管蛋白折叠产生的细丝结构,并得出结论,基本单位具有相似的特性,每个特性都可以形成一系列结构。因此,肌动蛋白折叠在微丝中的使用和微管蛋白折叠在微管中的使用可能是由更广泛的细丝可能性引起的,但是在早期的真核生物中已根深蒂固。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号