...
首页> 外文期刊>AIP Advances >Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography
【24h】

Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

机译:扩散张量成像和磁共振电阻抗断层成像相结合的各向异性脑组织电导率成像的实验评估

获取原文
   

获取外文期刊封面封底 >>

       

摘要

Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.
机译:生物组织的各向异性是一种低频现象,与细胞膜的功能和结构有关。各向异性电导率成像具有潜力,可用于分析电磁场与生物系统之间的相互作用,例如预测电刺激疗法中的电流通路。为了改善在临床环境中的应用,需要精确的方法来了解人体在受激电流作用下的确切反应。在这项研究中,我们使用最新开发的扩散张量磁共振磁共振电阻抗层析成像方法,通过实验评估犬脑组织的各向异性电导率张量分布。在低频下,生物组织的电导率可以表示为细胞外空间离子迁移率和浓度的乘积。从大脑的扩散张量图像中,我们可以获得有关水分子扩散运动的方向信息,这与离子的迁移率相对应。根据磁通量密度成功计算了提供离子浓度信息的位置相关比例因子,以获得等效电导率张量。通过结合两种技术的信息,我们最终可以重建脑组织的各向异性电导张量图像。与以前使用全局比例因子的方法得出的结果相比,重建后的电导率图像更好地证明了强各向异性大脑区域中信号强度的增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号