首页> 外文期刊>Energy Harvesting and Systems >Development of Compliant Thermoelectric Generators (TEGs) in Aerospace Applications Using Topology Optimization
【24h】

Development of Compliant Thermoelectric Generators (TEGs) in Aerospace Applications Using Topology Optimization

机译:使用拓扑优化开发航空航天应用中的兼容热电发电机(TEG)

获取原文
           

摘要

Thermoelectric generator (TEG) elements typically made of Bismuth Telluride (Bi2Te3) have good thermoelectric properties but are very brittle. In practice, however, TEG elements often are subject to both mechanical and thermal loading. Although clamping is the main source for mechanical loading in TEGs, other loadings such as from vibrations can occur and inducing stresses which can lead to failure. If the allowable stress is exceeded, then device failure will result. Axial stress is predominantly found in vertically oriented elements. Elements oriented in other positions experience both axial and bending stresses. However, when shear and bending occur, failure is far more likely. Therefore, TEG shape and orientation relative to the thermal and structural loading are critical. In this context, a topology optimization approach is posed to develop a compliant TEG, capable of maintaining thermoelectric functioning and sustaining mechanical loadings. This approach builds on previous research on topology optimization for multifunctional materials, but uniquely deals with multifunctional design of a composite TEG. First a tool is developed and validated to study the unique compliant structure and second a composite 3-D unit cell comprised of structural and thermoelectric materials is created. The volume fractions and orientation of the two materials are optimized to support applied structural shear, bending, and axial structural loads and thermal loads. A optimal structural model was shown to have equal shear and adjoint loads that resulted to a an increase of 9.61?% displacement while using 8.5?% less material. The integrated model (structural and thermal) used 8.5?% less material and had a 9.64?% increase in displacement. The implication of this research is that it could help to inform 3-D printing of more compliant TEGs optimized for a particular application.
机译:通常由碲化铋(Bi2Te3)制成的热电发生器(TEG)元件具有良好的热电性能,但非常脆。然而,实际上,TEG元件通常要承受机械和热负荷。尽管夹紧是TEG中机械负载的主要来源,但是其他负载(例如来自振动的负载)可能会发生,并且会产生应力,从而导致失效。如果超过允许的应力,则将导致设备故障。轴向应力主要出现在垂直方向的元件中。定位在其他位置的元素会同时承受轴向应力和弯曲应力。但是,当发生剪切和弯曲时,发生故障的可能性更大。因此,TEG的形状和方向相对于热负荷和结构负荷至关重要。在这种情况下,提出了一种拓扑优化方法来开发兼容的TEG,该TEG能够维持热电功能并维持机械负荷。这种方法建立在先前对多功能材料拓扑优化的研究的基础上,但是独特地处理了复合TEG的多功能设计。首先,开发并验证了用于研究独特顺应性结构的工具,其次,创建了由结构和热电材料组成的复合3-D晶胞。优化了两种材料的体积分数和方向,以支持所施加的结构剪切,弯曲以及轴向结构载荷和热载荷。最佳的结构模型显示出相等的剪切载荷和伴随载荷,从而导致位移增加了9.61%,而所使用的材料减少了8.5%。集成模型(结构和热模型)使用的材料减少了8.5%,位移增加了9.64%。这项研究的意义在于,它可以帮助告知3-D打印针对特定应用优化的更兼容的TEG。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号