...
首页> 外文期刊>Energy Equipment and Systems >An investigation on effect of backbone geometric anisotropy on the performance of infiltrated SOFC electrodes
【24h】

An investigation on effect of backbone geometric anisotropy on the performance of infiltrated SOFC electrodes

机译:骨架几何各向异性对浸润SOFC电极性能的影响研究

获取原文
           

摘要

Design of optimal microstructures for infiltrated solid oxide fuel cell (SOFC) electrodes is a complicated process because of the multitude of the electrochemical and physical phenomena taking place in the electrodes in different temperatures, current densities and reactant flow rates. In this study, a stochastic geometric modeling method is used to create a range of digitally realized infiltrated SOFC electrode microstructures to extract their geometry-related electrochemical and physical properties. Triple Phase Boundary (TPB), active surface density of particles along with the gas transport factor is evaluated in those realized models to adapt for various infiltration strategies. Recently, additive manufacturing or freeze type casting methods enable researchers to investigate the performance of directional electrodes to get the maximum electrochemical reaction sites, gas diffusivity and ionic conductivity simultaneously. A series of directional backbones with different amount of virtually deposited electrocatalyst particles are characterized in the first step. The database of microstructural parameters (inputs) and effective geometric properties (outputs) is used to train a range neural network. A microstructure property hull is created using the best neural network model to discover the range of effective properties, their relative behaviour and optimum microstructure. The characteristics of models is shown that there is not any contradiction between the high level of TPB and contact surface density of particles, but the highest amount of gas diffusivity can be found in the microstructures with lower level of reaction sites. Also increasing the contact surface density has a negative effect on gas transport but the high level of TPB density is feasible in the full range of microstructures. In the other hand, TPB density and gas diffusion into the models are inversely related, although there are a limited number of microstructures with high level of reaction sites and acceptable gas diffusivity. Finally, using a simple optimization process, the microstructures with the highest level of reaction sites and gas transport factor are identified which have the backbone porosity of about 50%, and extremely higher gain growth rate normal to the electrolyte. Additive manufacturing and 3D printing methods will enhance researchers in the future to create the real directional electrodes on the base of these proposed models.
机译:渗透固体氧化物燃料电池(SOFC)电极的最佳微观结构设计是一个复杂的过程,因为在不同温度,电流密度和反应物流速下,电极中会发生多种电化学和物理现象。在这项研究中,使用随机几何建模方法来创建一系列数字实现的浸入式SOFC电极微结构,以提取其与几何相关的电化学和物理特性。在那些已实现的模型中评估了三相边界(TPB),颗粒的有效表面密度以及气体传输因子,以适应各种渗透策略。最近,增材制造或冷冻铸造方法使研究人员能够研究定向电极的性能,以同时获得最大的电化学反应位点,气体扩散率和离子电导率。在第一步中,表征了具有不同数量的虚拟沉积的电催化剂颗粒的一系列定向主链。微结构参数(输入)和有效几何特性(输出)的数据库用于训练范围神经网络。使用最佳神经网络模型创建微结构特性船体,以发现有效特性的范围,它们的相对行为和最佳微结构。模型的特征表明,TPB的高含量与颗粒的接触表面密度之间没有任何矛盾,但是在较低的反应位点的微观结构中可以发现最高的气体扩散率。同样,增加接触表面密度对气体传输也有负面影响,但是在整个微观结构范围内高水平的TPB密度是可行的。另一方面,TPB密度和气体向模型的扩散呈反比关系,尽管微观结构的数量有限,但具有高水平的反应位点和可接受的气体扩散率。最后,使用简单的优化过程,可以确定具有最高反应位点和气体传输因子的微结构,这些微结构具有约50%的主链孔隙率,并且垂直于电解质具有极高的增益增长率。增材制造和3D打印方法将在未来增强研究人员的能力,以便在这些建议的模型的基础上创建真正的定向电极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号