首页> 外文期刊>Entropy >On the Propagation of Blast Wave in Earth′s Atmosphere: Adiabatic and Isothermal Flow
【24h】

On the Propagation of Blast Wave in Earth′s Atmosphere: Adiabatic and Isothermal Flow

机译:爆炸波在地球大气中的传播:绝热和等温流

获取原文
           

摘要

Adiabatic and isothermal propagations of spherical blast wave produced due to a nuclear explosion have been studied using the Energy hypothesis of Thomas, in the nonuniform atmosphere of the earth. The explosion is considered at different heights. Entropy production is also calculated along with the strength and velocity of the shock. In both the cases; for adiabatic and isothermal flows, it has been found that shock strength and shock velocity are larger at larger heights of explosion, in comparison to smaller heights of explosion. Isothermal propagation leads to a smaller value of shock strength and shock velocity in comparison to the adiabatic propagation. For the adiabatic case, the production of entropy is higher at higher heights of explosion, which goes on decreasing as the shock moves away from the point of explosion. However for the isothermal shock, the calculation of entropy production shows negative values. With negative values for the isothermal case, the production of entropy is smaller at higher heights of explosion, which goes on increasing as the shock moves away from the point of explosion. Directional study of the shock motion and entropy production show that in both the cases of adiabatic and isothermal flow, shock strength and shock velocity are larger in upward motion of the shock, in comparison to the downward motion of the shock. For adiabatic flow, entropy production is larger in upward motion of the shock; whereas, with negative values, entropy production is smaller in upward motion of the isothermal shock. For the adiabatic case, the profiles of shock strength, shock velocity and entropy production are smooth and have the largest value in vertically upward direction and have the lowest value in vertically downward direction, forming the oval shape. For the isothermal case, the profiles of shock strength and shock velocity show similar trend as that for adiabatic case but the profile of entropy production shows opposite trend. The profiles maintain their shape as the shock moves away. Comparison with observed values of shock velocity shows that isothermal case produces better results in comparison to the adiabatic case.
机译:使用托马斯的能量假设,在地球的非均匀大气中研究了由于核爆炸产生的球形爆炸波的绝热和等温传播。爆炸被认为是在不同的高度。熵产生也与冲击的强度和速度一起计算。在两种情况下;对于绝热和等温流动,已发现与较小的爆炸高度相比,较大的爆炸高度的冲击强度和冲击速度较大。与绝热传播相比,等温传播导致较小的冲击强度和冲击速度值。对于绝热情况,在较高的爆炸高度处,熵的产生较高,随着震动从爆炸点移开,熵的产生继续减小。但是,对于等温冲击,熵产的计算显示为负值。在等温情况下为负值时,在较高的爆炸高度处,熵的产生较小,并且随着冲击远离爆炸点而继续增加。冲击运动和熵产生的方向研究表明,在绝热和等温流动的情况下,与冲击的向下运动相比,在冲击的向上运动中冲击强度和冲击速度更大。对于绝热流,在激波的向上运动中产生的熵更大;反之,在负值下,等温激波的向上运动中的熵产生较小。对于绝热情况,冲击强度,冲击速度和熵产生的轮廓是平滑的,并且在竖直向上的方向上具有最大值,而在竖直向下的方向上具有最低值,从而形成椭圆形。在等温情况下,冲击强度和速度的曲线显示出与绝热情况相似的趋势,但是熵产生的曲线却显示出相反的趋势。当冲击移开时,型材保持其形状。与观察到的冲击速度值的比较表明,与绝热情况相比,等温情况产生了更好的结果。

著录项

  • 来源
    《Entropy》 |2006年第3期|共页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种
  • 中图分类 生理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号