首页> 外文期刊>IUCrJ >Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire
【24h】

Magnetic field-induced magnetostructural transition and huge tensile superelasticity in an oligocrystalline Ni–Cu–Co–Mn–In microwire

机译:寡晶Ni–Cu–Co–Mn–In微丝中的磁场诱导的磁结构转变和巨大的拉伸超弹性

获取原文
       

摘要

Meta-magnetic shape-memory alloys combine ferroelastic order with ferromagnetic order and exhibit attractive multifunctional properties, but they are extremely brittle, showing hardly any tensile deformability, which impedes their practical application. Here, for the first time, an Ni–Cu–Co–Mn–In microwire has been developed that simultaneously exhibits a magnetic field-induced first-order meta-magnetic phase transition and huge tensile superelasticity. A temperature-dependent in situ synchrotron high-energy X-ray diffraction investigation reveals that the martensite of this Ni43.7Cu1.5Co5.1Mn36.7In13 microwire shows a monoclinic six-layered modulated structure and the austenite shows a cubic structure. This microwire exhibits an oligocrystalline structure with bamboo grains, which remarkably reduces the strain incompatibility during deformation and martensitic transformation. As a result, huge tensile superelasticity with a recoverable strain of 13% is achieved in the microwire. This huge tensile superelasticity is in agreement with our theoretical calculations based on the crystal structure and lattice correspondence of austenite and martensite and the crystallographic orientation of the grains. Owing to the large magnetization difference between austenite and martensite, a pronounced magnetic field-induced magnetostructural transition is achieved in the microwire, which could give rise to a variety of magnetically driven functional properties. For example, a large magnetocaloric effect with an isothermal entropy change of 12.7 J kg−1 K−1 (under 5 T) is obtained. The realization of magnetic-field- and tensile-stress-induced structural transformations in the microwire may pave the way for exploiting the multifunctional properties under the coupling of magnetic field and stress for applications in miniature multifunctional devices.
机译:亚磁性形状记忆合金将铁弹性有序与铁磁有序结合在一起,并具有吸引人的多功能性能,但它们非常脆,几乎没有任何拉伸变形性,这妨碍了它们的实际应用。在这里,镍-铜-钴-锰-铟微丝首次被开发出来,它同时具有磁场感应的一阶亚磁相变和巨大的拉伸超弹性。温度相关的原位同步加速器高能X射线衍射研究表明,该Ni43.7Cu1.5Co5.1Mn5.17In13微丝的马氏体显示单斜六层调制结构,奥氏体显示立方结构。该微丝表现出具有竹粒的寡晶结构,从而显着降低了变形和马氏体转变过程中的应变不相容性。结果,在微丝中获得了具有13%的可恢复应变的巨大拉伸超弹性。这种巨大的拉伸超弹性与我们基于奥氏体和马氏体的晶体结构和晶格对应以及晶粒的晶体取向的理论计算相符。由于奥氏体和马氏体之间存在较大的磁化差异,因此在微丝中实现了明显的磁场感应的磁结构转变,这可能会产生各种磁驱动的功能特性。例如,获得了大的磁热效应,其等温熵变化为12.7 J(kg-1 K-1(在5underT以下)。微线中磁场和张应力引起的结构转换的实现,可以为在微型多功能设备中的磁场和应力耦合下利用多功能特性铺平道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号