首页> 外文期刊>Geosciences >Biogeochemical Characterization of Metal Behavior from Novel Mussel Shell Bioreactor Sludge Residues
【24h】

Biogeochemical Characterization of Metal Behavior from Novel Mussel Shell Bioreactor Sludge Residues

机译:新型贻贝生物反应器污泥残渣中金属行为的生物地球化学特征

获取原文
           

摘要

Acid mine drainage (AMD) remediation commonly produces byproducts which must be stored or utilized to reduce the risk of further contamination. A mussel shell bioreactor has been implemented at a coal mine in New Zealand, which is an effective remediation option, although an accumulated sludge layer decreased efficiency which was then removed and requires storage. To understand associated risks related to storage or use of the AMD sludge material, a laboratory mesocosm study investigated the physio-chemical and biological influence in two conditions: anoxic storage (burial deep within a waste rock dump) or exposure to oxic environments (use of sludge on the surface of the mine). Solid phase characterization by Scanning Electron Microscopy (SEM) and selective extraction was completed to compare two environmental conditions (oxic and anoxic) under biologically active and abiotic systems (achieved by gamma irradiation). Changes in microbial community structure were monitored using 16s rDNA amplification and next-generation sequencing. The results indicate that microbes in an oxic environment increase the formation of oxyhydroxides and acidic conditions increase metal mobility. In an oxic and circumneutral environment, the AMD sludge may be repurposed to act as an oxygen barrier for mine tailings or soil amendment. Anoxic conditions would likely promote the biomineralization of sulfide minerals in the AMD sludge by sulfate reducing bacteria (SRB), which were abundant in the system. The anoxic conditions reduced the risk of trace metals (Zn) associated with oxides, but increased Fe associated with organic material. In summary, fewer risks are associated with anoxic burial but repurposing in an oxic condition may be appropriate under favorable conditions.
机译:酸性矿山排水(AMD)修复通常会产生副产品,必须将其存储或利用以减少进一步污染的风险。贻贝壳生物反应器已在新西兰的一个煤矿中实施,这是一种有效的补救措施,尽管累积的污泥层降低了效率,然后将其去除并需要存储。为了了解与AMD污泥材料的存储或使用相关的风险,实验室的中观研究对以下两种情况下的物理化学和生物学影响进行了研究:缺氧存储(埋在废石堆场深处)或暴露于有氧环境(使用矿井表面的污泥)。完成了通过扫描电子显微镜(SEM)进行的固相表征和选择性萃取,以比较具有生物活性和非生物系统(通过伽马射线辐照)下的两种环境条件(有氧和无氧)。使用16s rDNA扩增和下一代测序监测微生物群落结构的变化。结果表明,在有氧环境中,微生物会增加羟基氧化物的形成,而在酸性条件下,则会增加金属的迁移率。在有氧和环境中的环境中,AMD污泥可能会重新用作矿山尾矿或土壤改良剂的氧气屏障。缺氧条件可能会通过系统中大量存在的硫酸盐还原细菌(SRB)促进AMD污泥中硫化物矿物的生物矿化。缺氧条件降低了与氧化物相关的痕量金属(Zn)的风险,但增加了与有机材料相关的Fe的风险。总而言之,与缺氧葬礼相关的风险较小,但在有利条件下,在有氧条件下重新使用是合适的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号