...
首页> 外文期刊>Fluids and Barriers of the CNS >A stochastic differential equation analysis of cerebrospinal fluid dynamics
【24h】

A stochastic differential equation analysis of cerebrospinal fluid dynamics

机译:脑脊液动力学的随机微分方程分析

获取原文
           

摘要

Background Clinical measurements of intracranial pressure (ICP) over time show fluctuations around the deterministic time path predicted by a classic mathematical model in hydrocephalus research. Thus an important issue in mathematical research on hydrocephalus remains unaddressed--modeling the effect of noise on CSF dynamics. Our objective is to mathematically model the noise in the data. Methods The classic model relating the temporal evolution of ICP in pressure-volume studies to infusions is a nonlinear differential equation based on natural physical analogies between CSF dynamics and an electrical circuit. Brownian motion was incorporated into the differential equation describing CSF dynamics to obtain a nonlinear stochastic differential equation (SDE) that accommodates the fluctuations in ICP. Results The SDE is explicitly solved and the dynamic probabilities of exceeding critical levels of ICP under different clinical conditions are computed. A key finding is that the probabilities display strong threshold effects with respect to noise. Above the noise threshold, the probabilities are significantly influenced by the resistance to CSF outflow and the intensity of the noise. Conclusions Fluctuations in the CSF formation rate increase fluctuations in the ICP and they should be minimized to lower the patient's risk. The nonlinear SDE provides a scientific methodology for dynamic risk management of patients. The dynamic output of the SDE matches the noisy ICP data generated by the actual intracranial dynamics of patients better than the classic model used in prior research.
机译:背景技术颅内压(ICP)随时间的临床测量显示,脑积水研究中的经典数学模型预测的确定性时间路径周围会出现波动。因此,关于脑积水的数学研究中的一个重要问题仍未解决-建模噪声对脑脊液动力学的影响。我们的目标是对数据中的噪声进行数学建模。方法将压力量研究中ICP的时间演变与输液联系起来的经典模型是一个基于CSF动力学和电路之间自然自然类比的非线性微分方程。将布朗运动合并到描述CSF动力学的微分方程中,以获得适应ICP波动的非线性随机微分方程(SDE)。结果明确解决了SDE,并计算了在不同临床条件下超过ICP临界水平的动态概率。一个关键发现是,概率显示出对噪声的强大阈值效应。高于噪声阈值时,概率会受到CSF流出阻力和噪声强度的显着影响。结论脑脊液形成率的波动增加了ICP的波动,应将其最小化以降低患者的风险。非线性SDE为患者的动态风险管理提供了一种科学的方法。与先前研究中使用的经典模型相比,SDE的动态输出与患者实际颅内动态所产生的嘈杂的ICP数据匹配得更好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号