首页> 外文期刊>Materials >Semisolid Microstructural Evolution during Partial Remelting of a Bulk Alloy Prepared by Cold Pressing of the Ti-Al-2024Al Powder Mixture
【24h】

Semisolid Microstructural Evolution during Partial Remelting of a Bulk Alloy Prepared by Cold Pressing of the Ti-Al-2024Al Powder Mixture

机译:Ti-Al-2024Al粉末混合物冷压制备的块状合金部分重熔过程中的半固态组织演变

获取原文
           

摘要

A new method, powder thixoforming, has been proposed to fabricate an in situ Al 3 Ti p /2024Al composite. During partial remelting, the microstructural evolution of the bulk alloy prepared by cold pressing of the Ti, Al, 2024Al powder mixture was investigated, and the formation mechanism of the Al 3 Ti particles produced by the reaction between the Ti powder and the Al alloy melt is also discussed in detail. The results indicate that the microstructural evolution of the 2024 alloy matrix can be divided into three stages: a rapid coarsening of the powder grains; a formation of primary α-Al particles surrounded with a continuous liquid film; and a slight coarsening of the primary α-Al particles. Simultaneously, a reaction layer of Al 3 Ti can be formed on the Ti powder surface when the bulk is heated for 10 min at 640 °C The thickness (X) of the reaction layer increases with the time according to the parabolic law of (X = -0.43t^{2} + 4.21t + 0.17). The stress generated in the reaction layer due to the volume dilatation can be calculated by using the equationσ (sigma_{Al_{3}Ti} = -rac{ E_{Al_{3}Ti} }{6(1-v{Al_{3}Ti})} rac{ t^{3}_{Al_{3}Ti} }{t_{Ti}} left(rac{1}{R} - rac{1}{R_{0}} ight) ). Comparing the obtained data with the results of the drip experiment, the reaction rate for the Ti powder and Al powder mixture is greater than that for the Ti plate and Al alloy mixture, respectively.
机译:已经提出了一种新的方法,即粉末触变成形法,以制备原位Al 3 Ti p / 2024Al复合材料。研究了部分重熔过程中通过冷压Ti,Al,2024Al粉末混合物制备的块状合金的组织演变,并探讨了Ti粉末与铝合金熔体反应生成的Al 3 Ti颗粒的形成机理。还将详细讨论。结果表明,2024合金基体的组织演变可分为三个阶段:粉末晶粒的快速粗化;晶粒的快速粗化;晶粒的快速粗化。形成由连续液膜包围的原生α-Al颗粒;且初级α-Al颗粒略微变粗。同时,当将本体在640°C下加热10 min时,可在Ti粉末表面形成Al 3 Ti反应层。根据()的抛物线定律,反应层的厚度(X)随时间增加。 X = -0.43t ^ {2} + 4.21t + 0.17 )。可以使用等式σ( sigma_ {Al_ {3} Ti} =- frac {E_ {Al_ {3} Ti}} {6(1-v)计算由于体积膨胀而在反应层中产生的应力{Al_ {3} Ti})} frac {t ^ {3} _ {Al_ {3} Ti}} {t_ {Ti}} left( frac {1} {R}- frac {1} { R_ {0}} right))。将获得的数据与滴注实验的结果进行比较,Ti粉末和Al粉末混合物的反应速率分别大于Ti板和铝合金混合物的反应速率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号