首页> 外文期刊>MBio >Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering
【24h】

Improving Microbial Biogasoline Production in Escherichia coli Using Tolerance Engineering

机译:使用耐受性工程技术改善大肠杆菌中的微生物生物汽油生产

获取原文
           

摘要

Engineering microbial hosts for the production of fungible fuels requires mitigation of limitations posed on the production capacity. One such limitation arises from the inherent toxicity of solvent-like biofuel compounds to production strains, such as Escherichia coli. Here we show the importance of host engineering for the production of short-chain alcohols by studying the overexpression of genes upregulated in response to exogenous isopentenol. Using systems biology data, we selected 40 genes that were upregulated following isopentenol exposure and subsequently overexpressed them in E.?coli. Overexpression of several of these candidates improved tolerance to exogenously added isopentenol. Genes conferring isopentenol tolerance phenotypes belonged to diverse functional groups, such as oxidative stress response (soxS, fpr, and nrdH), general stress response (metR, yqhD, and gidB), heat shock-related response (ibpA), and transport (mdlB). To determine if these genes could also improve isopentenol production, we coexpressed the tolerance-enhancing genes individually with an isopentenol production pathway. Our data show that expression of 6 of the 8 candidates improved the production of isopentenol in E.?coli, with the methionine biosynthesis regulator MetR improving the titer for isopentenol production by 55%. Additionally, expression of MdlB, an ABC transporter, facilitated a 12% improvement in isopentenol production. To our knowledge, MdlB is the first example of a transporter that can be used to improve production of a short-chain alcohol and provides a valuable new avenue for host engineering in biogasoline production. >IMPORTANCE The use of microbial host platforms for the production of bulk commodities, such as chemicals and fuels, is now a focus of many biotechnology efforts. Many of these compounds are inherently toxic to the host microbe, which in turn places a limit on production despite efforts to optimize the bioconversion pathways. In order to achieve economically viable production levels, it is also necessary to engineer production strains with improved tolerance to these compounds. We demonstrate that microbial tolerance engineering using transcriptomics data can also identify targets that improve production. Our results include an exporter and a methionine biosynthesis regulator that improve isopentenol production, providing a starting point to further engineer the host for biogasoline production.
机译:用于生产可替代燃料的工程微生物宿主需要减轻对生产能力的限制。这样的局限性之一是由于溶剂状生物燃料化合物对生产菌株如大肠杆菌的固有毒性所致。在这里,我们通过研究响应外源异戊烯醇而上调的基因的过表达,显示了宿主工程对于生产短链醇的重要性。利用系统生物学数据,我们选择了40个在异戊烯醇暴露后上调的基因,然后在大肠杆菌中过表达它们。这些候选物中的几种的过表达改善了对外源添加的异戊烯醇的耐受性。赋予异戊烯醇耐受表型的基因属于不同的功能组,例如氧化应激反应( soxS fpr nrdH ),一般应激反应( metR yqhD gidB ),与热休克相关的反应( ibpA )和运输( > mdlB )。为了确定这些基因是否还可以改善异戊烯醇的生产,我们分别与异戊烯醇的生产途径共表达了增强耐受性的基因。我们的数据显示,在8种候选物中有6种的表达提高了大肠杆菌中异戊烯醇的产生,而蛋氨酸生物合成调节剂MetR使异戊烯醇产生的效价提高了55%。此外,ABC转运蛋白MdlB的表达促进了异戊烯醇产量的12%的提高。据我们所知,MdlB是转运蛋白的第一个例子,可用于改善短链醇的生产,并为生物汽油生产中的宿主工程提供了宝贵的新途径。 >重要:微生物宿主平台用于生产大宗商品(例如化学品和燃料)的过程现已成为许多生物技术努力的重点。这些化合物中的许多对宿主微生物具有固有的毒性,尽管努力优化生物转化途径,但反过来又限制了生产。为了达到经济上可行的生产水平,还必须设计对这些化合物具有更高耐受性的生产菌株。我们证明了使用转录组学数据进行的微生物耐受工程也可以确定可提高产量的目标。我们的结果包括改善异戊烯醇生产的出口商和蛋氨酸生物合成调节剂,为进一步设计生物汽油生产宿主提供了起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号