首页> 外文期刊>Results in Physics >Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters
【24h】

Study on the propagation law of temperature field in surrounding rock of underground coal gasification (UCG) combustion cavity based on dynamic thermal parameters

机译:基于动态热参数的地下煤气化燃烧腔围岩温度场传播规律研究

获取原文
           

摘要

The high temperature generated during underground coal gasification will not only produce high-temperature thermal stress in the surrounding rock of the combustion area, but also change the physical and mechanical parameters of the surrounding rock. The change of thermal parameters affects the expansion of the temperature field inside the surrounding rock, causing the change of mechanical properties and internal thermal stress of surrounding rock in combustion zone, and then affects the stability of the gasifier. In the past, the research on the propagation law of temperature field in surrounding rock of combustion zone based on dynamic variation of thermal parameters with temperature was very limited, which severely limited the development of the strata control technology of underground coal gasification, so it is urgent to carry out this research. In this study, an explicit finite difference method is used to establish a numerical model for calculating the temperature field in materials under the thermal parameters varying with the temperature, which is applied to the study of the temperature field expansion in the surrounding rock of the combustion area of the underground coal gasification, obtaining the following results: With time, the influence range of temperature field in the strata gradually expands, and the temperature of each point in the strata increases first and then decreases, and the temperature extreme gradually expands to the inside of the strata. By extracting the temperature extremes of each point of surrounding rocks in the combustion cavity, it is found that the propagation range of temperature field is 11.4?m in the roof, 9.3?m in the floor and 9.6?m in the coal wall on both sides. The coal wall within 3.1?m on both sides of the combustion cavity loses its bearing capacity, and the bearing capacity of the coal wall within 1.7?m decreases, which has adverse effects on the coal wall within 4.8?m. This study can play an important role in promoting the progress of surrounding rock control technology of underground coal gasification.
机译:地下煤气化过程中产生的高温不仅会在燃烧区域的围岩中产生高温热应力,还会改变围岩的物理力学参数。热参数的变化会影响围岩内部温度场的扩展,引起燃烧区围岩的力学性能和内部热应力的变化,进而影响气化炉的稳定性。过去,基于热参数随温度的动态变化对燃烧区围岩温度场的传播规律的研究非常有限,严重限制了地下煤气化地层控制技术的发展。迫切需要开展这项研究。在这项研究中,使用显式有限差分法建立一个数值模型来计算材料在温度随温度变化的热参数下的温度场,该模型用于研究燃烧围岩中的温度场扩展随着时间的推移,随着时间的推移,地层温度场的影响范围逐渐扩大,地层各点的温度先升高后降低,极端温度逐渐扩展到地层内部。通过提取燃烧腔内围岩各点的极限温度,发现温度场的传播范围分别在顶板为11.4μm,底板为9.3μm,煤壁为9.6μm。双方。燃烧腔两侧3.1?m以内的煤壁丧失了承载力,而1.7?m以内的煤壁的承载力降低,这对4.8?m以内的煤壁产生了不利影响。该研究对促进地下煤气化围岩控制技术的进步具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号