首页> 外文期刊>Orthopaedic Journal of Sports Medicine >Endoscopic Proximal Hamstring Repair: Portal Site Anatomy - A Cadaveric Study
【24h】

Endoscopic Proximal Hamstring Repair: Portal Site Anatomy - A Cadaveric Study

机译:内镜近端腿筋修复:门户网站解剖-尸体研究

获取原文
           

摘要

Objectives: Hamstring injuries commonly cause pain, weakness and functional limitations. While most hamstring injuries involve the musculotendinous junction or muscle belly, proximal hamstring tendon avulsions are a subset of hamstring injuries that are frequently more debilitating. Nonoperative treatment has demonstrated poor outcomes, thus surgical repair has become the mainstay. Open surgical repair has been the standard, but improved endoscopic techniques have enabled proximal hamstring fixation with decreased risk of infection and numbness, without the morbidity of a large, posterior incision. Prior anatomic studies described relevant anatomy near the proximal hamstring origin at the ischial tuberosity in the setting of an open repair, but literature describing pertinent anatomy during endoscopic repair is sparse. This cadaveric study enhances knowledge and safety of endoscopic proximal hamstring repair by describing pertinent anatomy surrounding four commonly used endoscopic portals. Methods: Ten fresh-frozen pelvis specimens (5 M, 5F) underwent endoscopic proximal hamstring repair and dissection with evenly distributed laterality (5 R, 5 L). Proximal hamstring ruptures were simulated endoscopically with an arthroscopic knife. Endoscopic repair was then completed on each specimen through four endoscopic portals (Inferolateral, Medial, Superolateral and Accessory Superior) using two double-loaded 3.0 mm polyether ether ketone (PEEK) suture anchors and two 3.75 mm PEEK knotless screw-in anchors. After repair, portal tracts were maintained by inserting four 2.0 mm k-wires through cannulas placed through the portals, securing the wires in bone in the ischial tuberosity beyond the zone of repair. The specimen was dissected in layers around the wires, and measurements from portal tracts to nine pertinent anatomic structures were obtained using a digital caliper. Each measurement was repeated three times, then averaged to obtain a composite mean. Measurements were statistically verified with an intraclass correlation coefficient (ICC), all but two of which were above 0.90. Results: Ten cadaveric specimens demonstrated a mean age and BMI of 45.4 and 27.3, respectively. With respect to anatomic measurements, on average no portal tract was closer than 2.0 cm to the sciatic nerve, inferior gluteal neurovascular bundle or posterior cutaneous nerve, and all double-row repairs were easily completed with good fixation through these four portals (Table 1). Additional anatomic landmarks surrounding the hamstring origin were identified endoscopically, and when routinely located, each landmark helped improve reproducibility and safety of endoscopic proximal hamstring repair (Figure 1). Conclusion: This cadaveric study of the proximal hamstring origin maps the anatomic landscape encountered endoscopically, and supports the efficacy and safety of endoscopic proximal hamstring repair. Average distances (cm) from endoscopic portal sites to nine anatomic structures. Inferolateral Medial Superolateral Accessory Superior Inferior Border Gluteus Maximus 2.49 1.57 4.15 3.95 Adductor Magnus 0.69 0.88 1.80 2.95 Conjoint Hamstring Tendon 0.80 1.25 0.60 1.27 Tip of Ischial Tuberosity 1.15 1.27 2.36 3.39 Sacrotuberous Ligament 2.59 2.23 1.81 1.04 Sciatic Nerve 2.91 3.97 2.37 3.04 Short External Rotators 3.41 3.46 1.89 1.25 Posterior Cutaneous Nerve 3.34 4.54 2.55 3.22 Inferior Gluteal Neurovascular Bundle 5.82 5.96 4.27 3.65 Figure 1. Endoscopic view of a left hip from the medial portal. The intact hamstring tendon is in the center of the image, with pertinent surrounding anatomy. 1. The sacrotuberous ligament. 2. The adductor magnus tendon and muscle fibers. 3. The lateral edge of the ischial tuberosity (with the fibers of the quadratus femoris just lateral to it). 4. The inferior fibers of the inferior gemellus muscle.
机译:目的:Ham绳肌损伤通常会引起疼痛,无力和功能受限。尽管大多数绳肌损伤涉及肌腱末端交界处或肌肉腹部,但近端绳肌腱撕脱是injuries绳肌损伤的一个子集,常常使人衰弱。非手术治疗已证明效果不佳,因此手术修复已成为主流。开放式外科手术修复已成为标准,但改良的内窥镜技术已使近端绳肌固定能够降低感染和麻木的风险,并且不会出现较大的后切口切口。先前的解剖学研究描述了在开放修补的情况下在坐骨结节附近近端腿筋起源附近的相关解剖,但是描述内窥镜修补期间相关解剖的文献很少。这项尸体研究通过描述围绕四个常用内窥镜门脉的相关解剖结构,增强了内窥镜近端腿筋修复的知识和安全性。方法:对十个新鲜冷冻的骨盆标本(5 M,5F)进行内窥镜下近端string绳肌修复和解剖,侧向均匀分布(5 R,5 L)。用关节镜刀在内窥镜下模拟近端腿筋断裂。然后,使用两个双加载的3.0 mm聚醚醚酮(PEEK)缝合锚钉和两个3.75 mm PEEK无结旋入式锚钉,通过四个内窥镜门(下外侧,内侧,上外侧和辅助上位)对每个标本完成内窥镜修复。修复后,通过将四根2.0毫米k线插入穿过穿过门的套管中,从而将门固定在坐骨结节内超出修复区域的骨头中,从而保持门脉。将标本在金属丝周围分层解剖,并使用数字卡尺获得从门道到九个相关解剖结构的测量值。每次测量重复三次,然后取平均值以获得复合平均值。使用组内相关系数(ICC)对测量进行统计验证,除两个以外,其他所有系数均高于0.90。结果:十个尸体标本的平均年龄和BMI分别为45.4和27.3。就解剖学测量而言,平均而言,没有门束距离坐骨神经,臀下神经血管束或后皮神经不到2.0 cm,并且通过这四个门的固定良好,所有双排修复均很容易完成(表1) 。内窥镜检查可以识别围绕绳肌起源的其他解剖学界标,常规定位时,每个界标都有助于提高内镜近端scopic绳肌修复的可重复性和安全性(图1)。结论:尸体近端study绳肌起源的研究绘制了内窥镜下遇到的解剖图,并支持内镜近端绳肌修复的有效性和安全性。内窥镜门户网站到九个解剖结构的平均距离(cm)。下外侧内侧上外侧附件上方下边框臀大肌2.49 1.57 4.15 3.95收肌腱0.69 0.88 1.80 2.95联合Ham绳肌腱0.80 1.25 0.60 1.27坐骨结节尖端1.15 1.27 2.36 3.39 cro结韧带2.59 2.23 1.81 1.04 3.01 3.04 3.01坐骨神经节3.46 1.89 1.25后皮肤神经3.34 4.54 2.55 3.22臀下神经血管束5.82 5.96 4.27 3.65图1.内镜从内侧门向左内窥镜观察。完整的绳肌腱位于图像的中心,周围具有相关的解剖结构。 1. tube结膜韧带。 2.内收肌腱和肌纤维。 3.坐骨结节的外侧边缘(股四头肌的纤维刚好位于外侧)。 4.下睑肌的下纤维。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号