首页> 外文期刊>Orthopaedic Journal of Sports Medicine >A Biomechanical Assessment of Biceps Femoris Repair Techniques
【24h】

A Biomechanical Assessment of Biceps Femoris Repair Techniques

机译:股二头肌修复技术的生物力学评估

获取原文
           

摘要

Background: Knee injuries encountered in clinical practice can involve avulsions of the biceps femoris from the fibula and proximal tibia. Advances in tendon repair methods now allow for repairs with increased surface areas using modern suture anchor techniques. Despite descriptions of repair techniques, there are no biomechanical studies on the biceps femoris for comparison. Purpose/Hypothesis: The objective of this controlled laboratory study was to determine the failure load of the native biceps femoris distal insertion and to evaluate modern repair techniques. Our hypothesis was 2-fold: (1) Suture repairs to the tibia and fibula would perform better on tensile testing than repairs to the fibula alone, and (2) complex bridge repairs, similar to those frequently used in rotator cuff surgery, would perform better on tensile testing than simple repairs. Study Design: Controlled laboratory study. Methods: A total of 40 paired, fresh-frozen cadaveric specimens were dissected, identifying the biceps femoris and its insertion on the proximal tibia and fibula. The native biceps femoris footprint was left intact in 8 specimens and tested to failure on a uniaxial materials testing machine evaluating tensile properties, while in the other 32 specimens, the biceps femoris insertion was dissected using a No. 15 scalpel blade, underwent repair, and was then tested to failure on a uniaxial materials testing machine evaluating tensile properties. Four repair constructs were evaluated, with 8 specimens allocated for each: construct 1 involved a simple repair (ie, passing suture through tissue in a running Krackow fashion and tying at the anchor site) to the fibula with 2 suture anchors, construct 2 involved a simple repair to the fibula and tibia with 3 suture anchors, construct 3 was a fibular repair with a tibial suture bridge involving the fibula and tibia and 3 suture anchors, construct 4 involved a transosseous repair through the fibula and 1 suture anchor on the tibia. Analysis of variance was used to evaluate for significance of the mean failure load and stiffness between groups. Results: The mean (±95% CI) failure loads were the following: native biceps femoris, 1280 ± 247.0 N; simple fibular repair, 173 ± 84.6 N; simple fibular and tibial repair, 176 ± 48.1 N; fibular repair with tibial suture bridge, 191 ± 78.5 N; and transosseous repair, 327 ± 66.3 N. The mean stiffness values were the following: native, 46 ± 13.0 N/mm; simple fibular repair, 16 ± 5.1 N/mm; simple fibular and tibial repair, 14 ± 5.4 N/mm; fibular repair with tibial suture bridge, 13 ± 2.8 N/mm; and transosseous repair, 15 ± 2.5 N/mm. Interconstruct comparison of failure loads revealed no statistical difference between constructs utilizing anchors alone. The transosseous repair showed a significant difference for the failure load when compared with each anchor repair construct ( P = .02, .02, and .04 for constructs 1, 2, and 3, respectively). Interconstruct comparison of stiffness revealed no statistical difference between all constructs ( P > .86). None of the repair techniques re-created the failure load or stiffness of the native biceps femoris tendon ( P = .02). Conclusion: In this biomechanical study, no difference was found between the mean failure loads of different biceps femoris repair constructs involving suture anchors alone and No. 2 braided polyester and ultra–high-molecular-weight polyethylene suture. A technique involving transosseous fibular tunnels and 2-mm suture tape illustrated a greater mean failure load than repairs relying on suture anchors for fixation. Clinical Relevance: Understanding the tensile performance of biceps femoris repair constructs aids clinicians with preoperative and intraoperative decisions. Current biceps femoris repair techniques do not approximate the native strength of the tendon. A transosseous style of repair offers the highest failure load.
机译:背景:临床实践中遇到的膝盖受伤可能涉及腓骨和胫骨近端股二头肌撕脱。肌腱修复方法的进步现在允许使用现代缝合锚固技术以增加的表面积进行修复。尽管有修复技术的描述,但没有关于股二头肌的生物力学研究用于比较。目的/假设:这项受控实验室研究的目的是确定股二头肌远端插入的失败负荷并评估现代修复技术。我们的假设是2倍:(1)胫骨和腓骨的缝合线修复在拉伸测试上比单独腓骨的修复效果更好;(2)复杂的桥修复,类似于在肩袖手术中经常使用的修复拉伸测试比简单维修更好。研究设计:受控实验室研究。方法:解剖40对成对的新鲜冷冻尸体标本,鉴定股二头肌及其在胫骨和腓骨近端的插入情况。在8个标本中保留原始股二头肌足迹,并在单轴材料试验机上测试其拉伸性能,以测试其是否断裂,而在其他32个标本中,使用15号手术刀刀片解剖股二头肌,进行修复,并然后在评估拉伸性能的单轴材料测试机上测试其是否失效。评估了四个修复体,每个均分配了8个样本:构建体1涉及一个简单的修复(即以连续的Krackow方式将缝合线穿过组织并在锚定部位绑扎)到带有2个缝合锚钉的腓骨,构造2涉及一个用3个缝合锚钉对腓骨和胫骨进行简单修复,构建体3是用涉及腓骨和胫骨的胫骨缝合桥和3个缝合锚钉进行腓骨修复,构建体4涉及通过腓骨的骨膜修复和1个在胫骨上的缝合锚钉。方差分析用于评估组之间的平均破坏载荷和刚度的显着性。结果:平均(±95%CI)失效负荷为:股二头肌,1280±247.0N。单纯腓骨修复,173±84.6 N;腓骨和胫骨简单修复,176±48.1 N;胫骨缝合桥修复腓骨,191±78.5 N;平均硬度值如下:天然,46±13.0 N / mm;骨质修复,327±66.3N。简单的腓骨修复,16±5.1 N / mm;简单的腓骨和胫骨修复,14±5.4 N / mm;胫骨缝合桥修复腓骨,13±2.8 N / mm;骨间修复:15±2.5 N / mm。破坏荷载的结构间比较表明,单独使用锚的结构之间没有统计差异。与每个锚固修复结构相比,穿骨修复的破坏载荷表现出显着差异(分别针对结构1、2和3的P = .02,.02和.04)。构造体间刚度的比较显示,所有构造体之间无统计学差异(P> .86)。没有一种修复技术能够重建股二头肌天然肌腱的破坏载荷或刚度(P = .02)。结论:在这项生物力学研究中,仅使用缝合锚和2号编织聚酯和超高分子量聚乙烯缝合线的不同二头肌股二头肌修复结构的平均破坏载荷没有发现差异。涉及穿骨腓骨隧道和2 mm缝合线的技术显示出比依靠缝合锚固定的修复术更大的平均破坏负荷。临床意义:了解股二头肌修复结构的拉伸性能可帮助临床医生进行术前和术中决策。当前的股二头肌修复技术不能近似肌腱的天然强度。骨质疏松的修复方式可提供最高的故障负荷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号