首页> 外文期刊>Solar-Terrestrial Physics >On the possibility for laboratory simulation of generation of Alfvén disturbances in magnetic tubes in the solar atmosphere
【24h】

On the possibility for laboratory simulation of generation of Alfvén disturbances in magnetic tubes in the solar atmosphere

机译:关于在实验室中模拟太阳大气中电磁管中Alfvén扰动产生的可能性

获取原文
           

摘要

The paper deals with generation of Alfvén plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to the corona. The studies were carried out at experimental stand KI-1 representing a high-vacuum chamber 1.2 m in diameter, 5 m in length, external magnetic field up to 500 G along the chamber axis, and up to 2·10–6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube 15–20 cm in radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfvén wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component Bφ and field-aligned current Jz. The disturbances propagate at a near-Alfvén velocity 70–90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, the Alfvén wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. A right-hand polarized high-frequency whistler predictor was registered which propagated before the Alfvén wave at a velocity of 300 km/s. The polarization direction changed with the Alfvén wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20–30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.
机译:本文通过在激磁的背景等离子体中爆炸激光等离子体来解决磁通管中Alfvén等离子体的干扰。具有类似扭力型波激发作用的过程似乎提供了从太阳光球到日冕的能量转移。研究是在实验台KI-1上进行的,该实验台代表直径1.2 m,长度5 m的高真空腔室,沿腔室轴最大500 G的外部磁场以及最大2·10-6 Torr压力。操作模式。当将CO2激光脉冲聚焦在平坦的聚乙烯靶材上时,会产生激光等离子体,然后激光等离子体在夹角背景氢(或氦)等离子体中传播。结果,沿着腔室轴线和外部磁场方向对半径为15-20 cm的磁通量管进行了实验模拟。另外,测量管中的等离子体密度分布。 Alfvén波沿磁场的传播是由磁场横向分量Bφ和场对准电流Jz的扰动引起的。扰动以接近Alfvén的速度70-90 km / s传播,并且是磁场横向分量的左旋圆极化。据推测,Alfvén波是由激光等离子体云与背景之间无碰撞相互作用的磁层流机制产生的。记录了一个右极化高频惠斯勒预测器,该预测器以300 km / s的速度在Alfvén波之前传播。极化方向随着Alfvén波的到来而改变。发现缓慢的磁声波的特征是背景血浆浓度的突然变化以及外部磁场的同时位移。扰动以〜20–30 km / s的速度传播,与低血浆β值下的离子声接近。根据初步估计,干扰转移了激光等离子体原始能量的大约10%。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号