...
首页> 外文期刊>Physical Review X >Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics
【24h】

Immense Magnetic Response of Exciplex Light Emission due to Correlated Spin-Charge Dynamics

机译:相关自旋电荷动力学对复杂发光的巨大磁响应

获取原文
           

摘要

As carriers slowly move through a disordered energy landscape in organic semiconductors, tiny spatial variations in spin dynamics relieve spin blocking at transport bottlenecks or in the electron-hole recombination process that produces light. Large room-temperature magnetic-field effects (MFEs) ensue in the conductivity and luminescence. Sources of variable spin dynamics generate much larger MFEs if their spatial structure is correlated on the nanoscale with the energetic sites governing conductivity or luminescence such as in coevaporated organic blends within which the electron resides on one molecule and the hole on the other (an exciplex). Here, we show that exciplex recombination in blends exhibiting thermally activated delayed fluorescence produces MFEs in excess of 60% at room temperature. In addition, effects greater than 4000% can be achieved by tuning the device’s current-voltage response curve by device conditioning. Both of these immense MFEs are the largest reported values for their device type at room temperature. Our theory traces this MFE and its unusual temperature dependence to changes in spin mixing between triplet exciplexes and light-emitting singlet exciplexes. In contrast, spin mixing of excitons is energetically suppressed, and thus spin mixing produces comparatively weaker MFEs in materials emitting light from excitons by affecting the precursor pairs. Demonstration of immense MFEs in common organic blends provides a flexible and inexpensive pathway towards magnetic functionality and field sensitivity in current organic devices without patterning the constituent materials on the nanoscale. Magnetic fields increase the power efficiency of unconditioned devices by 30% at room temperature, also showing that magnetic fields may increase the efficiency of the thermally activated delayed fluorescence process.
机译:随着载流子缓慢移动穿过有机半导体中无序的能量态势,自旋动力学的微小空间变化将缓解传输瓶颈处或产生光的电子-空穴复合过程中的自旋阻塞。电导率和发光度会产生较大的室温磁场效应(MFE)。如果自旋动力学的空间结构在纳米尺度上与控制电导率或发光的高能位点相关,例如在共蒸发的有机混合物中,电子在一个分子中存在,而空穴在另一个分子中(激基复合物),则可变自旋动力源会产生更大的MFE。 。在这里,我们显示,在室温下,热激延迟荧光共混物中的激基复合物重组产生的MFE超过60%。此外,通过器件调节来调节器件的电流-电压响应曲线,可以获得超过4000%的效果。这两种巨大的MFE都是在室温下其设备类型的最大报告值。我们的理论追溯了这种MFE及其对温度的异常依赖于三重态激基复合物和发光单重态激基复合物之间自旋混合的变化。相反,激子的自旋混合受到能量抑制,因此自旋混合通过影响前体对而在从激子发光的材料中产生相对较弱的MFE。常见有机共混物中大量MFE的展示提供了一种灵活而廉价的途径,可实现当前有机设备中的磁性功能和磁场灵敏度,而无需在纳米级上对组成材料进行图案化。磁场在室温下可使未经调节的设备的功率效率提高30%,这也表明磁场可提高热激活延迟荧光过程的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号