...
首页> 外文期刊>Plasma and Fusion Research >Scientific and Computational Challenges of the Fusion Simulation Program (FSP)
【24h】

Scientific and Computational Challenges of the Fusion Simulation Program (FSP)

机译:融合仿真程序(FSP)的科学和计算挑战

获取原文
           

摘要

This paper highlights the scientific and computational challenges facing the Fusion Simulation Program (FSP) - a major national initiative in the United States with the primary objective being to enable scientific discovery of important new plasma phenomena with associated understanding that emerges only upon integration. This requires developing a predictive integrated simulation capability for magnetically-confined fusion plasmas that are properly validated against experiments in regimes relevant for producing practical fusion energy. It is expected to provide a suite of advanced modeling tools for reliably predicting fusion device behavior with comprehensive and targeted science-based simulations of nonlinearly-coupled phenomena in the core plasma, edge plasma, and wall region on time and space scales required for fusion energy production. As such, it will strive to embody the most current theoretical and experimental understanding of magnetic fusion plasmas and to provide a living framework for the simulation of such plasmas as the associated physics understanding continues to advance over the next several decades. Substantive progress on answering the outstanding scientific questions in the field will drive the FSP toward its ultimate goal of developing the ability to predict the behavior of plasma discharges in toroidal magnetic fusion devices with high physics fidelity on all relevant time and space scales. From a computational perspective, this will demand computing resources in the petascale range and beyond together with the associated multi-core algorithmic formulation needed to address burning plasma issues relevant to ITER - a multibillion dollar collaborative experiment involving seven international partners representing over half the world's population. Even more powerful exascale platforms will be needed to meet the future challenges of designing a demonstration fusion reactor (DEMO). Analogous to other major applied physics modeling projects (e.g., Climate Modeling), the FSP will need to develop software in close collaboration with computers scientists and applied mathematicians and validated against experimental data from tokamaks around the world. Specific examples of expected advances needed to enable such a comprehensive integrated modeling capability and possible “co-design” approaches will be discussed.
机译:本文重点介绍了融合模拟计划(FSP)所面临的科学和计算挑战,这是美国的一项国家重大计划,其主要目的是使人们能够科学发现重要的新等离子体现象,并且只有通过整合才能产生相关的理解。这就要求开发一种用于磁约束聚变等离子体的预测性集成仿真功能,并针对与产生实际聚变能相关的方案中的实验进行正确验证。预计将提供一套先进的建模工具,通过基于聚变能量所需的时间和空间尺度的核心等离子体,边缘等离子体和壁区域中非线性耦合现象的全面且有针对性的基于科学的模拟,可靠地预测聚变设备的行为生产。因此,随着相关的物理理解在接下来的几十年中不断发展,它将努力体现最新的对磁聚变等离子体的理论和实验理解,并为模拟这种等离子体提供一个生动的框架。在回答该领域的重大科学问题方面的实质性进展将推动FSP朝着其最终目标发展,即在所有相关的时空尺度上开发具有高物理保真度的环形磁聚变设备中预测等离子体放电行为的能力。从计算的角度来看,这将需要数千万亿级别的计算资源,以及解决与ITER相关的燃烧等离子体问题所需的相关多核算法公式,这是一项数十亿美元的合作实验,涉及七个代表世界一半以上人口的国际合作伙伴。为了满足未来设计示范聚变反应堆(DEMO)的挑战,将需要甚至更强大的百亿亿次平台。与其他主要的应用物理建模项目(例如,气候建模)类似,FSP将需要与计算机科学家和应用数学家密切合作来开发软件,并根据来自世界各地托卡马克的实验数据进行验证。将讨论实现这种综合集成建模功能所需的预期进展的特定示例以及可能的“共同设计”方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号