首页> 外文期刊>The Open Plasma Physics Journal >Alternating Direction Implicit Methods for FDTD Using the Dey-Mittra Embedded Boundary Method
【24h】

Alternating Direction Implicit Methods for FDTD Using the Dey-Mittra Embedded Boundary Method

机译:基于Dey-Mittra嵌入边界方法的FDTD交替方向隐式方法

获取原文
           

摘要

The alternating direction implicit (ADI) method is an attractive option to use in avoiding the Courant- Friedrichs-Lewy (CFL) condition that limits the size of the time step required by explicit finite-difference time-domain (FDTD) methods for stability. Implicit methods like Crank-Nicholson offer the same advantages as ADI methods but they do not rely on simple, one-dimensional, tridiagonal system solves for which there are well-known fast solution methods. To date, the ADI method applied to the FDTD method for curved domains has been used within the context of subgridding (i.e., local refinement) or for stairstepped boundaries that are only first-order accurate. A popular secondorder accurate approach to representing smooth domains with the FDTD method is the Dey-Mittra embedded boundary method. However, to be useful in a realistic setting, the cells with only a small fraction of their volume inside the domain need to be discarded from simulations for stability considerations or else the time step size will be prohibitively small. Using the ADI method instead of the explicit method implies that time step can be chosen to depend on accuracy and no cells need discarding. We show in this paper the ability to maintain stability beyond the CFL limit for the Dey-Mittra method without discarding any cells. We also consider convergence of the ADI method as compared to the standard explicit method that is limited by the CFL condition.
机译:交替方向隐式(ADI)方法是避免Courant-Friedrichs-Lewy(CFL)条件使用的一种有吸引力的选择,该条件限制了显式有限差分时域(FDTD)方法所要求的稳定性的时间步长。像Crank-Nicholson这样的隐式方法具有与ADI方法相同的优点,但是它们不依赖于简单的,一维,三对角线系统求解,而众所周知的快速求解方法正是这种方法。迄今为止,应用于曲面域的FDTD方法的ADI方法已在子栅格化(即局部细化)或仅一阶精确的阶梯状边界中使用。用FDTD方法表示平滑域的一种流行的二阶精确方法是Dey-Mittra嵌入边界方法。但是,要在实际环境中使用,出于稳定性考虑,需要从模拟中丢弃区域中仅具有很小一部分体积的单元,否则时间步长将非常小。使用ADI方法代替显式方法意味着可以选择时间步长取决于准确性,并且不需要丢弃任何单元。我们在本文中显示了保持Dey-Mittra方法超出CFL极限的稳定性的能力,而不会丢弃任何细胞。与受CFL条件限制的标准显式方法相比,我们还考虑了ADI方法的收敛性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号