...
首页> 外文期刊>Transactions of the Japan Society for Computational Engineering and Science >Photoelectron Nano-spectroscopy of Reactive Ion Etching-Induced Damages to the Trench Sidewalls and Bottoms of 4H-SiC Trench-MOSFETs
【24h】

Photoelectron Nano-spectroscopy of Reactive Ion Etching-Induced Damages to the Trench Sidewalls and Bottoms of 4H-SiC Trench-MOSFETs

机译:反应离子刻蚀对4H-SiC沟道MOSFET的沟道侧壁和底部造成的损伤的光电子纳米光谱

获取原文
   

获取外文期刊封面封底 >>

       

摘要

SiC trench structures having a width of 0.6 μm and a depth of 2.0 μm are fabricated by reactive ion etching (RIE) using a gas mixture of SF_(6), Ar, and O_(2). Further, SiC trench structures are cleaved to expose the sidewall for the channel region of a trench MOSFET. These structures were analyzed by pin-point photoelectron spectroscopy using a 100 nm soft-X-ray beam. It is observed that around 2 nm-thick homogeneous carbon-rich layer containing 1—2% F forms on the SiC sidewalls. This may be caused due to the re-deposition of RIE reaction products, CF_(4) and SiF_(4), under appropriate conditions to fabricate the trench walls that are approximately vertical using RIE. Further, a carbon-rich layer having a thickness of about 2.4 nm is also formed on the bottom of the SiC trench, suggesting the possibility of selective etching of Si from the SiC substrates. The position of the dominant peak that is associated with the SiC component remains constant regardless of the trench depth, suggesting homogeneous band bending due to the RIE defects, which may explain the reason for no variation being observed in the gate oxide/SiC interface trap density values. Further, the band bending of 1.50 eV that is observed on the sidewall can be attributed to a positively charged carbon vacancy (V_(C)~(+)).
机译:通过使用SF_(6),Ar和O_(2)的气体混合物进行反应离子刻蚀(RIE)来制造宽度为0.6μm,深度为2.0μm的SiC沟槽结构。此外,将SiC沟槽结构劈开以暴露沟槽MOSFET的沟道区的侧壁。通过使用100 nm软X射线束的定点光电子能谱分析了这些结构。观察到,在SiC侧壁上形成了厚度约为2 nm的均匀的富碳层,其中含1-2%F。这可能是由于在适当条件下,使用RIE制备了近似垂直的RIE壁时,RIE反应产物CF_(4)和SiF_(4)的重新沉积所致。此外,还在SiC沟槽的底部上形成厚度约为2.4nm的富碳层,这提示从SiC衬底选择性蚀刻Si的可能性。无论沟槽深度如何,与SiC组分相关的主峰的位置都保持恒定,这表明由于RIE缺陷而导致的均匀带弯曲,这可以解释为未观察到栅极氧化物/ SiC界面陷阱密度变化的原因价值观。此外,在侧壁上观察到的1.50eV的带弯曲可以归因于带正电的碳空位(V_(C)〜(+))。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号