...
首页> 外文期刊>Journal of Experimental Neuroscience >Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System:
【24h】

Need for Speed and Precision: Structural and Functional Specialization in the Cochlear Nucleus of the Avian Auditory System:

机译:对速度和精度的需求:禽听觉系统耳蜗核的结构和功能专业化:

获取原文
           

摘要

Birds such as the barn owl and zebra finch are known for their remarkable hearing abilities that are critical for survival, communication, and vocal learning functions. A key to achieving these hearing abilities is the speed and precision required for the temporal coding of sound—a process heavily dependent on the structural, synaptic, and intrinsic specializations in the avian auditory brainstem. Here, we review recent work from us and others focusing on the specialization of neurons in the chicken cochlear nucleus magnocellularis (NM)—a first-order auditory brainstem structure analogous to bushy cells in the mammalian anteroventral cochlear nucleus. Similar to their mammalian counterpart, NM neurons are mostly adendritic and receive auditory nerve input through large axosomatic endbulb of Held synapses. Axonal projections from NM neurons to their downstream auditory targets are sophisticatedly programmed regarding their length, caliber, myelination, and conduction velocity. Specialized voltage-dependent potassium and sodium channel properties also play important and unique roles in shaping the functional phenotype of NM neurons. Working synergistically with potassium channels, an atypical current known as resurgent sodium current promotes rapid and precise action potential firing for NM neurons. Interestingly, these structural and functional specializations vary dramatically along the tonotopic axis and suggest a plethora of encoding strategies for sounds of different acoustic frequencies, mechanisms likely shared across species.
机译:诸如仓n和斑马雀的鸟类以其非凡的听力能力而闻名,这对于生存,交流和声音学习功能至关重要。实现这些听力能力的关键是声音的时间编码所需的速度和精度,该过程在很大程度上取决于鸟类听觉脑干的结构,突触和固有特性。在这里,我们回顾了我们和其他人最近的工作,这些工作侧重于鸡耳蜗大细胞核(NM)中的神经元专业化-一种类似于哺乳动物前腹耳蜗核中的丛状细胞的一级听觉脑干结构。与哺乳动物的类似,NM神经元大部分是树突状的,并通过Held突触的大型无囊尾突接受听觉神经输入。从NM神经元到其下游听觉目标的轴突投影就其长度,口径,髓鞘形成和传导速度进行了精密编程。专门的电压依赖性钾和钠通道特性在塑造NM神经元功能表型中也起着重要而独特的作用。与钾离子通道协同作用的非典型电流,称为再生钠电流,可促进NM神经元快速,精确地激发动作电位。有趣的是,这些结构和功能方面的专长沿断层轴显着变化,并提出了多种编码策略,用于不同声频的声音,这种机制可能在物种间共享。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号