首页> 外文期刊>Journal of oceanography >Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification
【24h】

Compensatory response of the unicellular-calcifying alga Emiliania huxleyi (Coccolithophoridales, Haptophyta) to ocean acidification

机译:单细胞钙化海藻Emiliania huxleyi(球藻,七足动物)对海洋酸化的补偿性反应

获取原文
           

摘要

Ocean acidification damages calcareous organisms, such as calcifying algae, foraminifera, corals, and shells. In this study, we made a device equipped with a Clark-type oxygen electrode and a pH-stat to examine how the most abundant calcifying phytoplankton, the coccolithophorid Emiliania huxleyi, responded to acidification and alkalization of the seawater medium. When E. huxleyi was incubated at pH 8.2, close to oceanic pH, the medium was alkalized during photosynthesis, and the alkalization rate [determined as μmol?HCl?added?(mg?Chl)?1?h?1] was identical to the activity of photosynthesis [determined as μmol?O2?evolved?(mg?Chl)?1?h?1]. When pH was maintained at 7.2 by the pH-stat, alkalization activity was stimulated and exceeded photosynthetic activity, resulting in an increase in the ratio of alkalization to photosynthesis (Alk/PS). On the other hand, no alkalization and photosynthesis were observed at pH 9.2. In contrast, acidification of seawater was observed in the dark because of the release of respiratory CO2 from cells at pH 8.2–9.2, but not at pH 7.2. When orthophosphate was rapidly depleted within a day in the batch culture, intracellular calcification gradually increased, and both photosynthesis and alkalization decreased gradually. During the period the Alk/PS ratio also decreased gradually. These results indicate that E. huxleyi possesses an ability to compensate for the acidification of seawater when photosynthesis is more actively driven than respiration. These results suggest that the E. huxleyi cells may not be severely damaged by oceanic acidification during photosynthesis because of their homeostatic function to avoid negative effects on cellular activity. Finally, we concluded that E. huxleyi cells possess a buffering ability to reduce acidification effects when photosynthesis is actively driven.
机译:海洋酸化会损害钙质生物,例如钙化藻类,有孔虫,珊瑚和贝壳。在这项研究中,我们制造了一种配有Clark型氧电极和pH值调节器的设备,以检查最丰富的钙化浮游植物-球墨石藻Emiliania huxleyi如何响应海水介质的酸化和碱化。当赫氏大肠杆菌在pH 8.2接近海洋pH的条件下孵育时,在光合作用过程中将其碱化,碱化速率[确定为μmol?HCl?添加量?(mg?Chl)?1?h?1]与光合作用的活性[由μmol2 O 2演变为?(mg?Chl)?1?h?1]决定。当通过pH调节剂将pH维持在7.2时,碱化活性被刺激并且超过光合作用活性,导致碱化与光合作用的比率(Alk / PS)增加。另一方面,在pH 9.2下未观察到碱化和光合作用。相反,在黑暗中观察到了海水的酸化,因为在pH 8.2-9.2时从细胞释放了呼吸中的CO2,而在pH 7.2时则没有。当分批培养中正磷酸盐在一天之内迅速耗尽时,细胞内钙化逐渐增加,光合作用和碱化作用均逐渐降低。在此期间,Alk / PS比也逐渐降低。这些结果表明,当光合作用比呼吸作用更积极地驱动时,赫hu黎大肠杆菌具有补偿海水酸化的能力。这些结果表明,在光合作用中海洋酸化可能不会严重破坏赫hu黎大肠杆菌细胞,因为它们具有稳态功能,可避免对细胞活性的负面影响。最后,我们得出结论,当光合作用被主动驱动时,赫E黎大肠杆菌细胞具有降低酸化作用的缓冲能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号