首页> 外文期刊>Journal of Systems Chemistry >Serial transfer can aid the evolution of autocatalytic sets
【24h】

Serial transfer can aid the evolution of autocatalytic sets

机译:连续转移可以帮助自催化集的演变

获取原文
           

摘要

Background The concept of an autocatalytic set of molecules has been posited theoretically and demonstrated empirically with catalytic RNA molecules. For this concept to have significance in a realistic origins-of-life scenario, it will be important to demonstrate the evolvability of such sets. Here, we employ a Gillespie algorithm to improve and expand on previous simulations of an empirical system of self-assembling RNA fragments that has the ability to spontaneously form autocatalytic networks. We specifically examine the role of serial transfer as a plausible means to allow time-dependent changes in set composition, and compare the results to equilibrium, or “batch” scenarios. Results We show that the simulation model produces results that are in close agreement with the original experimental observations in terms of generating varying autocatalytic (sub)sets over time. Furthermore, the model results indicate that in a “batch” scenario the equilibrium distribution is largely determined by competition for resources and stochastic fluctuations. However, with serial transfer the system is prevented from reaching such an equilibrium state, and the dynamics are mostly determined by differences in reaction rates. This is a consistent pattern that can be repeated, or made stronger or weaker by varying the reaction rates or the duration of the transfer steps. Increasing the number of molecules in the simulation actually strengthens the potential for selection. Conclusions These simulations provide a more realistic emulation of wet lab conditions using self-assembling catalytic RNAs that form interaction networks. In doing so, they highlight the potential evolutionary advantage to a prebiotic scenario that involves cyclic dehydration/rehydration events. We posit that such cyclicity is a plausible means to promote evolution in primordial autocatalytic sets, which could later lead to the establishment of individual-based biology.
机译:背景技术自动催化分子组的概念已在理论上提出,并已通过催化RNA分子进行了经验证明。为了使这一概念在现实的生命起源场景中具有重要意义,重要的是证明这种集合的可进化性。在这里,我们采用Gillespie算法来改进和扩展自组装RNA片段经验系统的先前模拟,该系统具有自发形成自催化网络的能力。我们专门研究了串行传输的作用,它是允许时间依赖的集合组成变化的合理手段,并将结果与​​平衡或“批处理”方案进行比较。结果我们显示,随着时间的推移,生成的自动催化(亚)集不同,模拟模型产生的结果与原始实验观察结果非常吻合。此外,模型结果表明,在“批量”情况下,均衡分布很大程度上取决于对资源的竞争和随机波动。但是,通过串行传输,系统无法达到这种平衡状态,动力学主要取决于反应速率的差异。通过改变反应速率或转移步骤的持续时间,这是可以重复的一致模式,或者变得更强或更弱。模拟中增加分子的数量实际上会增强选择的潜力。结论这些模拟使用形成相互作用网络的自组装催化RNA提供了更湿润的实验室条件的真实仿真。通过这样做,他们强调了涉及循环脱水/脱水事件的益生元场景的潜在进化优势。我们认为,这种周期性是促进原始自催化反应集进化的合理手段,这可能随后导致基于个体的生物学的建立。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号