...
首页> 外文期刊>Applied Microbiology >Engineered Pentafunctional Minicellulosome for Simultaneous Saccharification and Ethanol Fermentation in Saccharomyces cerevisiae
【24h】

Engineered Pentafunctional Minicellulosome for Simultaneous Saccharification and Ethanol Fermentation in Saccharomyces cerevisiae

机译:工程化的五功能微型纤维素酶用于酿酒酵母中的同时糖化和乙醇发酵

获取原文
           

摘要

Several yeast strains have been engineered to express different cellulases to achieve simultaneous saccharification and fermentation of lignocellulosic materials. However, successes in these endeavors were modest, as demonstrated by the relatively low ethanol titers and the limited ability of the engineered yeast strains to grow using cellulosic materials as the sole carbon source. Recently, substantial enhancements to the breakdown of cellulosic substrates have been observed when lytic polysaccharide monooxygenases (LPMOs) were added to traditional cellulase cocktails. LPMOs are reported to cleave cellulose oxidatively in the presence of enzymatic electron donors such as cellobiose dehydrogenases. In this study, we coexpressed LPMOs and cellobiose dehydrogenases with cellobiohydrolases, endoglucanases, and β-glucosidases in Saccharomyces cerevisiae . These enzymes were secreted and docked onto surface-displayed miniscaffoldins through cohesin-dockerin interaction to generate pentafunctional minicellulosomes. The enzymes on the miniscaffoldins acted synergistically to boost the degradation of phosphoric acid swollen cellulose and increased the ethanol titers from our previously achieved levels of 1.8 to 2.7 g/liter. In addition, the newly developed recombinant yeast strain was also able to grow using phosphoric acid swollen cellulose as the sole carbon source. The results demonstrate the promise of the pentafunctional minicellulosomes for consolidated bioprocessing by yeast.
机译:已经设计了几种酵母菌株来表达不同的纤维素酶,以实现木质纤维素材料的同时糖化和发酵。然而,这些努力的成功是微不足道的,如乙醇滴度相对较低以及工程酵母菌株使用纤维素材料作为唯一碳源生长的能力有限所证明的。最近,当将溶菌多糖单加氧酶(LPMO)添加到传统纤维素酶混合物中时,已观察到纤维素底物分解的实质性增强。据报道,在酶促电子供体例如纤维二糖脱氢酶存在下,LPMOs可氧化裂解纤维素。在这项研究中,我们在酿酒酵母中与纤维二糖水解酶,内切葡聚糖酶和β-葡萄糖苷酶共表达了LPMO和纤维二糖脱氢酶。这些酶被分泌并通过粘着蛋白-dockerin相互作用而停靠在表面展示的微型支架蛋白上,以产生五功能性微型纤维素体。微型支架蛋白上的酶具有协同作用,可促进磷酸溶胀纤维素的降解,并使乙醇的效价从我们先前达到的1.8克/升提高到2.7克/升。另外,新开发的重组酵母菌株也能够使用磷酸溶胀的纤维素作为唯一碳源生长。结果证明了五功能微纤维素酶有望通过酵母进行巩固的生物加工。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号