首页> 外文期刊>Applied Microbiology >The Polyextremophilic Bacterium Clostridium paradoxum Attains Piezophilic Traits by Modulating Its Energy Metabolism and Cell Membrane Composition
【24h】

The Polyextremophilic Bacterium Clostridium paradoxum Attains Piezophilic Traits by Modulating Its Energy Metabolism and Cell Membrane Composition

机译:多嗜性细菌梭状芽胞杆菌通过调节其能量代谢和细胞膜组成达到亲脂性状。

获取原文
           

摘要

In polyextremophiles, i.e., microorganisms growing preferentially under multiple extremes, synergistic effects may allow growth when application of the same extremes alone would not. High hydrostatic pressure (HP) is rarely considered in studies of polyextremophiles, and its role in potentially enhancing tolerance to other extremes remains unclear. Here, we investigated the HP-temperature response in Clostridium paradoxum, a haloalkaliphilic moderately thermophilic endospore-forming bacterium, in the range of 50 to 70°C and 0.1 to 30?MPa. At ambient pressure, growth limits were extended from the previously reported 63°C to 70°C, defining C. paradoxum as an actual thermophile. Concomitant application of high HP and temperature compared to standard conditions (i.e., ambient pressure and 50°C) remarkably enhanced growth, with an optimum growth rate observed at 22?MPa and 60°C. HP distinctively defined C. paradoxum physiology, as at 22?MPa biomass, production increased by 75% and the release of fermentation products per cell decreased by >50% compared to ambient pressure. This metabolic modulation was apparently linked to an energy-preserving mechanism triggered by HP, involving a shift toward pyruvate as the preferred energy and carbon source. High HPs decreased cell damage, as determined by Syto9 and propidium iodide staining, despite no organic solute being accumulated intracellularly. A distinct reduction in carbon chain length of phospholipid fatty acids (PLFAs) and an increase in the amount of branched-chain PLFAs occurred at high HP. Our results describe a multifaceted, cause-and-effect relationship between HP and cell metabolism, stressing the importance of applying HP to define the boundaries for life under polyextreme conditions.IMPORTANCE Hydrostatic pressure (HP) is a fundamental parameter influencing biochemical reactions and cell physiology; however, it is less frequently applied than other factors, such as pH, temperature, and salinity, when studying polyextremophilic microorganisms. In particular, how HP affects microbial tolerance to other and multiple extremes remains unclear. Here, we show that under polyextreme conditions of high pH and temperature, Clostridium paradoxum demonstrates a moderately piezophilic nature as cultures grow to highest cell densities and most efficiently at a specific combination of temperature and HP. Our results highlight the importance of considering HP when exploring microbial physiology under extreme conditions and thus have implications for defining the limits for microbial life in nature and for optimizing industrial bioprocesses occurring under multiple extremes.
机译:在多极端微生物中,即,微生物在多个极端条件下优先生长,当单独应用相同极端条件时,协同作用可能允许其生长。在多极端性微生物的研究中很少考虑使用高静水压(HP),目前尚不清楚其在潜在增强对其他极端情况的耐受性中的作用。在这里,我们研究了嗜盐梭状芽孢杆菌(一种嗜盐嗜中性嗜热内生孢子的细菌)在50至70°C和0.1至30?MPa范围内的HP温度响应。在环境压力下,生长极限从先前报道的63°C扩展到70°C,从而将矛盾梭菌定义为实际的嗜热菌。与标准条件(即环境压力和50°C)相比,同时施加高HP和高温显着增强了生长,在22?MPa和60°C时观察到最佳生长速率。惠普(HP)独特地定义了悖论衣藻的生理特性,与环境压力相比,当生物量为22?MPa时,产量增加了75%,每个细胞的发酵产物释放减少了> 50%。这种代谢调节显然与HP触发的能量保存机制有关,涉及向丙酮酸转变为首选的能源和碳源。通过Syto9和碘化丙锭染色确定,高HP降低了细胞损伤,尽管细胞内没有有机溶质积累。高HP时,磷脂脂肪酸(PLFA)的碳链长度明显减少,而支链PLFA的数量增加。我们的结果描述了HP与细胞代谢之间的多方面,因果关系,强调了应用HP定义多极端条件下生命的界限的重要性。静水压(HP)是影响生化反应和细胞生理的基本参数。 ;但是,在研究嗜多菌性微生物时,与其他因素(例如pH,温度和盐度)相比,该方法的应用频率较低。特别是,HP如何影响微生物对其他和多种极端情况的耐受性尚不清楚。在这里,我们表明,在高pH和高温的极端条件下,随着培养物生长到最高细胞密度,并且在温度和HP的特定组合下效率最高,矛盾型梭状芽胞杆菌表现出适中的亲脂性。我们的结果凸显了在极端条件下探索微生物生理学时考虑HP的重要性,因此对于定义自然界中微生物生命的极限以及优化在多个极端条件下发生的工业生物过程具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号