...
首页> 外文期刊>Applied Microbiology >Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus
【24h】

Anaerobic Oxidation of Benzene by the Hyperthermophilic Archaeon Ferroglobus placidus

机译:嗜热古细菌Ferroglobus placidus对苯的厌氧氧化。

获取原文
           

摘要

Anaerobic benzene oxidation coupled to the reduction of Fe(III) was studied in Ferroglobus placidus in order to learn more about how such a stable molecule could be metabolized under strict anaerobic conditions. F. placidus conserved energy to support growth at 85°C in a medium with benzene provided as the sole electron donor and Fe(III) as the sole electron acceptor. The stoichiometry of benzene loss and Fe(III) reduction, as well as the conversion of [~(14)C]benzene to [~(14)C]carbon dioxide, was consistent with complete oxidation of benzene to carbon dioxide with electron transfer to Fe(III). Benzoate, but not phenol or toluene, accumulated at low levels during benzene metabolism, and [~(14)C]benzoate was produced from [~(14)C]benzene. Analysis of gene transcript levels revealed increased expression of genes encoding enzymes for anaerobic benzoate degradation during growth on benzene versus growth on acetate, but genes involved in phenol degradation were not upregulated during growth on benzene. A gene for a putative carboxylase that was more highly expressed in benzene- than in benzoate-grown cells was identified. These results suggest that benzene is carboxylated to benzoate and that phenol is not an important intermediate in the benzene metabolism of F. placidus . This is the first demonstration of a microorganism in pure culture that can grow on benzene under strict anaerobic conditions and for which there is strong evidence for degradation of benzene via clearly defined anaerobic metabolic pathways. Thus, F. placidus provides a much-needed pure culture model for further studies on the anaerobic activation of benzene in microorganisms.
机译:为了研究在稳定的厌氧条件下如何稳定地代谢这种稳定的分子,研究了在厌氧性Feroglobus placidus中进行的厌氧苯氧化与Fe(III)的还原反应。 F. placidus保留能量以支持在85°C的培养基中以苯为唯一电子供体,Fe(III)为唯一电子受体的培养基中的生长。苯损失和Fe(III)还原的化学计量,以及[〜(14)C]苯向[〜(14)C]二氧化碳的转化,与通过电子转移将苯完全氧化为二氧化碳是一致的到铁(III)。在苯代谢过程中,苯甲酸酯而不是苯酚或甲苯以低水平积累,并且[〜(14)C]苯甲酸酯是由[〜(14)C]苯生成的。基因转录水平的分析显示,与苯乙酸盐相比,在苯上生长期间编码厌氧苯甲酸盐降解酶的基因表达增加,但是在苯上生长期间与酚降解有关的基因并未上调。确定了一个假定的羧化酶基因,该基因在苯中比在苯甲酸盐生长的细胞中表达更高。这些结果表明,苯被羧化成为苯甲酸酯,苯酚并不是F. placidus苯代谢的重要中间体。这是纯培养物中微生物的首次展示,该微生物可以在严格的厌氧条件下在苯上生长,并且有充分的证据表明苯可以通过明确定义的厌氧代谢途径降解。因此,F。placidus提供了急需的纯培养模型,用于进一步研究微生物中苯的厌氧活化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号