...
首页> 外文期刊>Applied Microbiology >Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae
【24h】

Gene Amplification on Demand Accelerates Cellobiose Utilization in Engineered Saccharomyces cerevisiae

机译:按需基因扩增加速了酿酒酵母中纤维二糖的利用。

获取原文
           

摘要

Efficient microbial utilization of cellulosic sugars is essential for the economic production of biofuels and chemicals. Although the yeast Saccharomyces cerevisiae is a robust microbial platform widely used in ethanol plants using sugar cane and corn starch in large-scale operations, glucose repression is one of the significant barriers to the efficient fermentation of cellulosic sugar mixtures. A recent study demonstrated that intracellular utilization of cellobiose by engineered yeast expressing a cellobiose transporter (encoded by cdt-1 ) and an intracellular β-glucosidase (encoded by gh1-1 ) can alleviate glucose repression, resulting in the simultaneous cofermentation of cellobiose and nonglucose sugars. Here we report enhanced cellobiose fermentation by engineered yeast expressing cdt-1 and gh1-1 through laboratory evolution. When cdt-1 and gh1-1 were integrated into the genome of yeast, the single copy integrant showed a low cellobiose consumption rate. However, cellobiose fermentation rates by engineered yeast increased gradually during serial subcultures on cellobiose. Finally, an evolved strain exhibited a 15-fold-higher cellobiose fermentation rate. To identify the responsible mutations in the evolved strain, genome sequencing was performed. Interestingly, no mutations affecting cellobiose fermentation were identified, but the evolved strain contained 9 copies of cdt-1 and 23 copies of gh1-1 . We also traced the copy numbers of cdt-1 and gh1-1 of mixed populations during the serial subcultures. The copy numbers of cdt-1 and gh1-1 in the cultures increased gradually with similar ratios as cellobiose fermentation rates of the cultures increased. These results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step in engineered yeast and copies of genes coding for metabolic enzymes might be amplified in yeast if there is a growth advantage. This study indicates that on-demand gene amplification might be an efficient strategy for yeast metabolic engineering.IMPORTANCE In order to enable rapid and efficient fermentation of cellulosic hydrolysates by engineered yeast, we delve into the limiting factors of cellobiose fermentation by engineered yeast expressing a cellobiose transporter (encoded by cdt-1 ) and an intracellular β-glucosidase (encoded by gh1-1 ). Through laboratory evolution, we isolated mutant strains capable of fermenting cellobiose much faster than a parental strain. Genome sequencing of the fast cellobiose-fermenting mutant reveals that there are massive amplifications of cdt-1 and gh1-1 in the yeast genome. We also found positive and quantitative relationships between the rates of cellobiose consumption and the copy numbers of cdt-1 and gh1-1 in the evolved strains. Our results suggest that the cellobiose assimilation pathway (transport and hydrolysis) might be a rate-limiting step for efficient cellobiose fermentation. We demonstrate the feasibility of optimizing not only heterologous metabolic pathways in yeast through laboratory evolution but also on-demand gene amplification in yeast, which can be broadly applicable for metabolic engineering.
机译:纤维素糖对微生物的有效利用对于生物燃料和化学品的经济生产至关重要。尽管酵母酿酒酵母是在大规模操作中广泛使用甘蔗和玉米淀粉的乙醇植物中广泛使用的强大微生物平台,但是葡萄糖抑制是纤维素糖混合物有效发酵的重要障碍之一。一项最新研究表明,表达纤维二糖转运蛋白(由cdt-1编码)和细胞内β-葡萄糖苷酶(由gh1-1编码)的工程酵母对纤维二糖的胞内利用可以缓解葡萄糖抑制,从而导致纤维二糖和非葡萄糖的同时发酵。糖。在这里,我们报告了通过实验室进化表达cdt-1和gh1-1的工程酵母增强的纤维二糖发酵。当cdt-1和gh1-1被整合到酵母基因组中时,单拷贝整合体的纤维二糖消耗率较低。然而,在纤维二糖上连续传代培养期间,工程酵母的纤维二糖发酵速率逐渐增加。最终,进化出的菌株显示出更高的纤维二糖发酵速率15倍。为了鉴定进化菌株中的负责突变,进行了基因组测序。有趣的是,没有发现影响纤维二糖发酵的突变,但进化后的菌株含有9份cdt-1和23份gh1-1。我们还追踪了连续传代培养中混合种群cdt-1和gh1-1的拷贝数。随着培养物中纤维二糖发酵速率的增加,培养物中cdt-1和gh1-1的拷贝数逐渐增加,比率相似。这些结果表明,纤维二糖同化途径(运输和水解)可能是工程酵母中的限速步骤,如果具有生长优势,则可能在酵母中扩增编码代谢酶的基因的拷贝。这项研究表明按需扩增基因可能是酵母代谢工程的有效策略。重要信息为了使工程酵母能够快速有效地发酵纤维素水解产物,我们深入研究了表达纤维二糖的工程酵母发酵纤维二糖的限制因素。转运蛋白(由cdt-1编码)和细胞内β-葡萄糖苷酶(由gh1-1编码)。通过实验室的发展,我们分离出了能够比亲代菌株更快发酵纤维二糖的突变菌株。快速纤维二糖发酵突变体的基因组测序表明,酵母基因组中cdt-1和gh1-1大量扩增。我们还发现纤维二糖消耗的速率与进化菌株中cdt-1和gh1-1的拷贝数之间存在正向和定量的关系。我们的结果表明纤维二糖同化途径(运输和水解)可能是有效的纤维二糖发酵的限速步骤。我们证明了不仅可以通过实验室进化来优化酵母中的异源代谢途径,而且可以优化酵母中的按需基因扩增的可行性,这可以广泛地应用于代谢工程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号