...
首页> 外文期刊>Applied Microbiology >Origin of Chemical Diversity in Prochloron-Tunicate Symbiosis
【24h】

Origin of Chemical Diversity in Prochloron-Tunicate Symbiosis

机译:氯丙二酸酯共生中化学多样性的起源

获取原文
           

摘要

Diversity-generating metabolism leads to the evolution of many different chemicals in living organisms. Here, by examining a marine symbiosis, we provide a precise evolutionary model of how nature generates a family of novel chemicals, the cyanobactins. We show that tunicates and their symbiotic Prochloron cyanobacteria share congruent phylogenies, indicating that Prochloron phylogeny is related to host phylogeny and not to external habitat or geography. We observe that Prochloron exchanges discrete functional genetic modules for cyanobactin secondary metabolite biosynthesis in an otherwise conserved genetic background. The module exchange leads to gain or loss of discrete chemical functional groups. Because the underlying enzymes exhibit broad substrate tolerance, discrete exchange of substrates and enzymes between Prochloron strains leads to the rapid generation of chemical novelty. These results have implications in choosing biochemical pathways and enzymes for engineered or combinatorial biosynthesis.IMPORTANCE While most biosynthetic pathways lead to one or a few products, a subset of pathways are diversity generating and are capable of producing thousands to millions of derivatives. This property is highly useful in biotechnology since it enables biochemical or synthetic biological methods to create desired chemicals. A fundamental question has been how nature itself creates this chemical diversity. Here, by examining the symbiosis between coral reef animals and bacteria, we describe the genetic basis of chemical variation with unprecedented precision. New compounds from the cyanobactin family are created by either varying the substrate or importing needed enzymatic functions from other organisms or via both mechanisms. This natural process matches successful laboratory strategies to engineer the biosynthesis of new chemicals and teaches a new strategy to direct biosynthesis.
机译:产生多样性的新陈代谢导致生物体内许多不同化学物质的进化。在这里,通过检查海洋共生关系,我们提供了一个精确的进化模型,该模型说明了自然界如何产生一系列新型化学物质-氰基肌动蛋白。我们显示,被膜和它们的共生蓝藻蓝细菌共享一致的系统发育史,表明绿藻树系统发生与宿主系统发生有关,而与外部栖息地或地理无关。我们观察到,Prochloron在不保守的遗传背景下交换了氰基actin次生代谢物生物合成的离散功能基因模块。模块交换导致离散化学官能团的增加或减少。由于潜在的酶表现出广泛的底物耐受性,因此Prochloron菌株之间底物和酶的离散交换导致化学新奇的快速产生。这些结果对于选择工程化或组合生物合成的生化途径和酶具有重要意义。重要信息虽然大多数生物合成途径可产生一种或几种产物,但其中一部分途径可产生多样性,并能够产生数千至数百万种衍生物。该特性在生物技术中非常有用,因为它使生物化学或合成生物方法能够生成所需的化学物质。一个基本的问题是自然本身如何产生这种化学多样性。在这里,通过检查珊瑚礁动物和细菌之间的共生关系,我们以前所未有的精度描述了化学变异的遗传基础。通过改变底物或从其他生物体中导入所需的酶功能,或者通过这两种机制,可以创建出氰基actin家族的新化合物。这种自然过程与成功的实验室策略相匹配,可以工程化新化学物质的生物合成,并教导一种指导生物合成的新策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号