首页> 外文期刊>Applied Microbiology >Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor
【24h】

Experimental Evolution of a Facultative Thermophile from a Mesophilic Ancestor

机译:中温祖先兼性嗜热菌的实验进化

获取原文
           

摘要

Experimental evolution via continuous culture is a powerful approach to the alteration of complex phenotypes, such as optimal/maximal growth temperatures. The benefit of this approach is that phenotypic selection is tied to growth rate, allowing the production of optimized strains. Herein, we demonstrate the use of a recently described long-term culture apparatus called the Evolugator for the generation of a thermophilic descendant from a mesophilic ancestor ( Escherichia coli MG1655). In addition, we used whole-genome sequencing of sequentially isolated strains throughout the thermal adaptation process to characterize the evolutionary history of the resultant genotype, identifying 31 genetic alterations that may contribute to thermotolerance, although some of these mutations may be adaptive for off-target environmental parameters, such as rich medium. We undertook preliminary phenotypic analysis of mutations identified in the glpF and fabA genes. Deletion of glpF in a mesophilic wild-type background conferred significantly improved growth rates in the 43-to-48°C temperature range and altered optimal growth temperature from 37°C to 43°C. In addition, transforming our evolved thermotolerant strain (EVG1064) with a wild-type allele of glpF reduced fitness at high temperatures. On the other hand, the mutation in fabA predictably increased the degree of saturation in membrane lipids, which is a known adaptation to elevated temperature. However, transforming EVG1064 with a wild-type fabA allele had only modest effects on fitness at intermediate temperatures. The Evolugator is fully automated and demonstrates the potential to accelerate the selection for complex traits by experimental evolution and significantly decrease development time for new industrial strains.
机译:通过连续培养进行实验进化是改变复杂表型(例如最佳/最高生长温度)的有效方法。这种方法的好处是,表型选择与生长速度有关,从而可以生产最佳菌株。在这里,我们演示了使用最近描述的长期培养设备Evolugator从嗜温祖先(大肠杆菌MG1655)生成嗜热后代的方法。此外,我们在整个热适应过程中使用了顺序分离的菌株的全基因组测序来表征所得基因型的进化历史,确定了可能导致耐热性的31种遗传变异,尽管其中某些突变可能适合脱靶环境参数,例如丰富的培养基。我们对glpF和fabA基因中鉴定的突变进行了初步的表型分析。删除中温野生型背景中的glpF可显着提高43至48°C温度范围内的生长速率,并将最佳生长温度从37°C更改为43°C。此外,用野生型glpF等位基因转化我们进化的耐热菌株(EVG1064)会降低高温适应性。另一方面,fabA中的突变可预测地增加了膜脂质的饱和度,这是对高温的已知适应。但是,用野生型fabA等位基因转化EVG1064对中等温度的适应性仅具有适度的影响。 Evolugator是完全自动化的,它展示了通过实验进化来加速对复杂性状的选择并显着减少新工业菌株的开发时间的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号